
D)TI vU: COY "

NAVAL POSTGRADUATE SCHOOL
Monterey, California

00

THESIS

AN INTELLIGENT TUTOR SYSTEM

FOR VISUAL AIRCRAFT RECOGNITION

by

Larry W. Campbell

June 1990

Thesis Advisor: Yuh-jeng Lee

Approved for public release; distribution is unlimited.

9j 0c ' 16 331

Unclassified
SECURITY CLASSIFICATION OF TI, - .: .. E

REPORT DOCUMENTATION PAGE

la. REPORT SECURi'Y CLA.6;F'CA;:.,J lb RESTRICTIVE NIAR i'INGS

IUncl&Ssified
2a. SECURITY CLASSFICATION AUTHORITY 3 DISTRI.BUION1AVAILABILITY OF REPORT

. IApproved for public release;
2b. DECLASSIFICATION / DOWNGRADING SCHE DULE distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S, S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(If a licable)

Naval Postgraduate School CS Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Bc. ADDRESS (City, State, and ZIP Code) 10 SOUICE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11 TITLE (Include Security Classification)

AN INTELLIGENT TUTOR SYSTEM FOR VISUAL AIRCRAFT RECOGNITION

12. PERSONAL AUTHOR(S)
Campbell, Larry W.
13a. TYPE OF REPORT 13b TIME COVERED t14, DATE OF REPORT (Year, Month, Day) 115. PAGE COUNT
Master's Thesis FROM TO C '7_3
16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government.
17 COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

-LD GROUP SUB-GROUP

III Intelligent Tutoring System, Intelligent Computer Aided
Instruction, Visual Aircraft Recognition

19 ABSTRACT (Continue on reverse if necessary and identify by block numbe,)

/ Visual aircraft recognition (VACR) is a critical skill for U.S. Army Short Range Air Defense (SHORAD)
soldiers. It is the most reliable means of identifying aircraft, however VACR skills are not easy to teach or learn,
and once learned they are highly degradable. The numerous training aids that exist to help units train soldiers require
qualified instructors who are not always available. Also, the varying degrees of proficiency among soldiers make
group training less than ideal. In an attempt to alleviate the problems in most VACR training programs, an
intelligent tutor system has been developed to teach VACR in accordance with the Wings, Engine, Fuselage, Tail
(WEFT) cognitive model. The Aircraft Recognition Tutor is a graphics based, object oriented instructional program
that teaches, reviews, and tests VACR skills at a level appropriate to the student. The tutor adaptively coaches the
student from the novice level, through the intermediate level, to the expert level. The tutor was provided to two U.S.
Army Air Defense Battalions for testing and evaluation.

The six month implementation, testing, and evaluation process demonstrated that, using existing technology in
Computer Science and Artificial Intelligence, useful training tools could be developed quickly and inexpensively
fnr &Pnnm~n nn Pxl m i cnm ters in the field.." , , - ,

20. DISTRIB TION/AVAILABILITY OF ABTRACT 21. ABSTRACT SECURITY CL SIFICATION

P UNCLASSIFIED/UNLIMITED E- SAME AS RPT OTIC USERS

22a NAME OF RESPONSIBLE INDIVI.)UAL 22b iELEPHGONi (Include Area Code) 'c OFFICE SYMBOL

v. -- 40R' 646-2361 ICS/Le
DD FORM 1473, st MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

Al! .;ther edit-ons are obsolete 0 u.S. Go,* wrwent prltn5I Oftles, 1IO8 0S-64

- i _Unclassified

Approved for public release; distribution is unlimited.

AN INTELLIGENT TUTOR SYSTEM
FOR VISUAL AIRCRAFT RECOGNITION

by
Larry W. Campbell

Captain, United States Army
B.S., Florida Southern College, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1990

Author:
Larry. W ampbell

Approved By:
Y -jeng Lee, Thesis Advisor

/an-Tak Shin •, condRed

Robert, B. McG C a ,

Department of Computer Science

ii

ABSTRACT

Visual aircraft recognition (VACR) is a critical skill for U.S. Army Short Range Air

Defense (SHORAD) soldiers. It is the most reliable means of identifying aircraft, however

VACR skills are not easy to teach or learn, and once learned they are highly degradable. The

numerous training aids that exist to help units train soldiers require qualified instructors who

are not always available. Also, the varying degrees of proficiency among soldiers make

group training less than ideal. In an attempt to alleviate the problems in most VACR training

programs, an intelligent tutor system has been developed to teach VACR in accordance with

the Wings, Engine, Fuselage, Tail (WEFT) cognitive model. The Aircraft Recognition

Tutor is a graphics based, object oriented instructional program that teaches, reviews, and

tests VACR skills at a level appropriate to the student. The tutor adaptively coaches the

student from the novice level, through the intermediate level, to the expert level. The tutor

was provided to two U.S. Army Air Defense Battalions for testing and evaluation.

The six month implementation, testing, and evaluation process demonstrated that,

using existing technology in Computer Science and Artificial Intelligence, useful training

tools could be developed quickly and inexpensively for deployment on existing computers

in the field. Accession For

NTIS GRA&I

DTIC TAB
Unanncunced []
Justificatio

By.

lea)O codos'

0 M"C/ e

TABLE OF CONTENTS

A. ISTORICALPERSPECTIIE......................... 1

B. THETHREAToo .. oo.o.. oo oooeoeg..... *. I

C. THEPROBLEM................................... 2

D. GOALS ANDOJCIEoo goo.egos........ egos.. 3

11. AIRCRAFT RECOGNITION TRAINING... .*...*............. 0 00 e0 00 4

A. TRAINING TECH-NIQUES AND GUIDELINES... 9 ...oooo* 4

B. TRAININGAIDSANDDEVICESoo...................... 6

III. THEWEITCOGNMTVEMODEL... ... *..* eog......*..e.. * 8

A. DESCRIPTIONOFTHEWEFTMODEL99e..ee 8

B. EVALUATIONOFTHEWEFTMODEL..................e 11

IV. SURVEY OF INTELLIGENT TUTORING SYSTEMS.*.oo..o.o*.o..e..o..o. 14

B. DESIGNS. oegee. gee. eooeoc. 15

C. COMPONENTS920

D. BEHAVIOR********** oeoee o so **ee so 9so oee eoe 23

E. EVALUATIONCRrI'ERIA.......*,.oo............... 24

iv

V. DESCRIPTION OF THE AIRCRAFT RECOGNITION TUTOR o ** ** 27

A. DOMAINKNOWLEDGEBASE. *,o**o*****,* o**°**° 27

B. STUDENT MODEL oo.o.o.o.o 28

C. TUTORIALKNOWLEDGEBASEo ...ooo o oo o oooo 30

D. INTEGRATION SYSTEM.......................oo... 33

E. IMPLEMENTATION DETAILS.....go.... oo....ooooo 34

VI. EVALUATION OF THE AIRCRAFT RECOGNITION TUTOR,, o. o o . 39

A. ASAVACRTRAININGAIDo.o. ,o000o **,* o•,ooooo 39

B. ASANINTELLIGENTTUTOR TTUOR.......,.. ,o.. 41

VII. CONCLUSIONo..,..... 43

A. ACCOMPLISHMENTSo•.•o.oo... •*goo•goo**go* 43

B. FUTURE IMPROVEMENTS AND MODIFICATIONS, o .o o o o . o 43

C. POSSIBLE ADAPTATIONS,.......o..ooo.o.o o o 45

APPENDIXA-CODEo Co o oo . o . o . o o, o. o o •o o oo o o oeoo 47

APPENDIX B-USER'SMANUAL....o...........oooo.o. o.oo 115

APPENDIXC-AIRCRAFTIMAGES. o.o,••o.oooo••,,•o••°.o.•. 149

BIBLIOGRAPHY, o . oo oo. o o ogoo oo go o ,o go go o* 164

INITIAL DISTRIBUTION LIST .oo...............ooooooooooooo 166

V

I. INTRODUCTION

A. HISTORICAL PERSPECTIVE

Fratricide. Webster defines it as the act of murdering or killing one's own brother or

sister or an individual having a relationship with him like that of a brother or sister. Ask a

pilot about fratricide, though, and you are likely to get a definition such as "being shot down

by your own forces", and will almost certainly be told that it represents an unacceptable risk

(Weidman, 1985, p. 17). Fratricide was a fact of life during World War 11, but occurred less

often during the Korean War, and was almost non-existent during the Viet Nam conflict.

Does this mean that we have learned from our mistakes, that fratricide is a tragedy of the past

that no longer poses a threat to our air forces? Recent training exercises indicate that the

threat remains and may in fact be greater today than any other time in history. Today's battle

environment is characterised by a plethora of high technology weapons that are capable of

destroying the most sophisticated helicopters and jet fighters in the world. Combine this with

decentralized authority for engaging aircraft and the threat seems overwhelming and

unmanageable.

B. THE THREAT

Consider the following mininalized scenario: A U.S. aircraft is returning from a strike

mission. To get back to the airbase he must pass through an Army Division. Within this

division area, 20 Stinger missile teams are deployed, in such a manner as to have overlapping

coverage zones. So. to return to the airbase, this aircraft will come within the engagement

zone of at least two teams. Each of these teams consists of two men, an E-4 or E-5 team chief

and an E-1 through E-3 missileman. Final authorization for engaging the aircraft is made by

the team chief and is based on visual identification of the aircraft. Assuming that an average

team chief will correctly identify 90% of the aircraft that he sees, the pilot of the aircraft has

an 80% chance of passing through the division area without being fired upon. The lethality

of a Stinger missile is well documented. But now consider a more realistic scenario: the same

aircraft is passing through the same division area, but this time must pass through a more

likely number of Stinger teams, as well as several Vulcan gun crews, perhaps a Chaparral

missile crew, and countless soldiers with small arms, all of which use visual identification

as a final means of determining whether or not to engage an aircraft. The odds of the aircraft

returning from the mission after successfully evading the enemies air defense forces are

greatly reduced. The life of the pilot hinges upon his aircraft being correctly identified by

each of the short range air defense fire units that he comes within range of.

C. THE PROBLEM

Why is there such a dependence on visual identification of aircraft? Other methods of

identiflying friendly aircraft are available. Interrogation, Friend or Foe (IFF) systems exist,

but are notoriously unreliable. Vulcan gun crews don't even have IFF capability, and what

about allied integrated air defense systems? Air Battle Management techniques such as safe

corridors work well for high altitude air defense weapons that rely on integrated radar

systems for identifying and tracking aircraft, but safe air corridors are difficult to identify

from the ground, and aircraft move through an area faster than current chain of control

methods can keep up with. The most reliable means of identifying aircraft is still visual

aircraft recognition (VACR), but VACR skills are not easy to teach or to learn, and once

learned these skills are highly degradable (Pliler, 1984, p. 14).

2

D. GOALS AND OBJECTIVES

The Aircraft Recognition Tutor was developed in an attempt to fill a gap that exists

in most VACR training programs. Because the tutor is designed to identify the soldiers'

current ability and teach at a level appropriate to that ability, it is useful for introducing

VACR to new soldiers as well as providing refresher training to more advanced soldiers.

After implementation, the Aircraft Recognition Tutor was provided to two U.S. Army Air

Defense Battalions for testing and evaluation. In the course of implementing, testing, and

evaluating the tutor (six months), it was demonstrated that, using existing technology in

Computer Science and Artificial Intelligence, useful training tools could be developed

quickly and inexpensively for deployment on existing computers in the field.

In the Chapter II, we examine the training aids and methods currently being used for

teaching visual aircraft recognition. Then, in Chapter II, we describe and evaluate the

WEFT cognitive model in terms of its effectiveness as a basis for training VACR. Chapter

IV consists of a survey of the attempts of others at developing intelligent tutoring systems

and is presented along with a description of a basic model for an intelligent tutor and

techniques that can be used to evaluate the effectiveness of a tutor. Chapter V is dedicated

to describing the design and implementation of the Aircraft Recognition Tutor, and Chapter

VI offers an objective evaluation of the tutor as both a VACR training tool and an intelligent

tutoring system. We conclude with a summary of our accomplishments, recommendations

for future improvements and modifications to the tutor, and examples of other knowledge

domains that the tutor could easily be adapted to teach.

3

H. AIRCRAFT RECOGNITION TRAINING

The requirement for visual aircraft recognition (VACR) by Short Range Air Defense

(SHORAD) soldiers is emphasized in many publications, including Q-STAG 699, JCS

publications, and Air Defense doctrinal manuals (Pliler, 1984, p. 14). As of October 1989,

standards require SHORAD soldiers to be able to identify visually by NATO name and

nomenclature 50 threat and friendly aircraft with an accuracy of at least 90 percent after an

exposure period of five seconds. The goal is 100 percent accuracy (Pliler, 1988, p. 38). This

is a daunting task, and numerous training aids have been developed to assist in achieving this

level of proficiency. In addition, guidelines for training programs have been suggested in

order to ensure effective training.

A. TRAINING TECHNIQUES AND GUIDELINES

1. Wings, Engine, Fuselage, Tail (WEFT)

The WEFT theory is currently believed to be the best method for teaching VACR.

In this theory, all aircraft are composed of the same basic elements: wings to provide lift, an

engine to provide motive power, a fuselage to carry the payload and controls, and a tail

assembly which usually serves the purpose of controlling the direction of flight. These

elements differ in their shape, size, number, and position. It is these basic elements that

distinguish one aircraft type from another. Detailed parts cannot be used as the only aid to

aircraft recognition, mainly because of the distances at which recognition should occur. The

individual components can be isolated for descriptions and studied as separate recognition

features. It is the composite of these features that must be learned in order to recognize and

identify an aircraft (FM 44-30, 1986, p. 3.2).

4

2. Simplicity

Descriptive terms must be kept simple so that the soldier's energy is spent on

learning VACR, not obscure specifications (Pliler, 1984, p. 15) (FM 44-30, 1986, p. 4.3).

Learning aircraft recognition is *difficult enough, without confronting the student with

hundreds of odd names, curious designations, incomprehensible specifications, and strange

descriptive terms (Wood, 1985, p. 9).

3. Comparison

Many aircraft have a similar appearance, and it may be difficult for a soldier to

recognize the differences between them unless he is given an opportunity to view them side

by side at the same aspect, heading, and climb angle. Given this, the soldier can then see

directly the differences that distinguish the aircraft, and learn how not to confuse them

(Pliler, 1984, p. 15) (Pliler, 1988, p. 39) (FM 44-30, 1986, p. 4.3).

4. Controlled Image Training

Individual components of aircraft should be isolated as separate recognition

features for description and study. The composite of these features are then learned in order

to identify a particular aircraft (Pliler, 1984, p. 15).

5. Segregation

Soldiers should be trained according to their ability. New soldiers and soldiers

needing detailed instruction should be taught separately from more advanced soldiers who

may only need review and testing (Pliler, 1988, p. 39).

6. Repetition

VACR skills are highly degradable. They are lost in a short time if reinforcement

training is not vigorously pursued (Pliler, 1984, p. 15). Therefore, training should be

scheduled regularly and in periods of no more than two or three hours (Pliler, 1988, p. 39).

5

B. TRAINING AIDS AND DEVICES

Several training aids and devices have been developed in order to help units train their

soldiers in visual aircraft recognition. These aids include posters, charts, card sets, slides,

movies, models, and correspondence courses. The most successful of these aids will be

discussed.

1. Ground Observer Aircraft Recognition (GOAR) Kit

The most widely used and reliable training aid for VACR has been the GOAR kit.

The current version of this ".it consists of 528 35-mm photographic slides of 48 military

aircraft. The aircraft are separated into the categories of helicopters, cargo, reconnaissance,

fighters, bombers, and CAS (Close Air Support) (FM 44-30, 1986, p. 4.7). Used correctly,

this kit can be very effective in training soldiers in aircraft identification skills. However,

this aid requires an experienced instructor and different training methods for soldiers with

different skill levels. In addition, the slides tend to age and become damaged to the point that

recognition is frequently based on the characteristics of the particular slide (eg. scratches or

blotches on the slide) rather than the characteristics of the aircraft. This results in a less

effective tool for training soldiers.

2. Visual Aircraft Recognition Playing Cards

This training aid, used similar to flash cards, is an excellent tool for training

soldiers on maneuvers or for "hip-pocket" training where access to more sophisticated aids

or a power source is not available (Pliler, 1986, p. 15). Again, though, without a qualified

instructor, it is not particularly effective.

3. VACR TEC Lessons

In an effort to overcome the need for an instructor, TEC lessons attempt to allow

soldiers to learn visual aircraft recognition skills at their own pace and on their own

6

schedules. The lessons consist of a continuous super 8-mm reel film with audio cassette

sound. The film is projected on either a six by eight inch screen for individual training, or

a larger movie screen for classroom presentation. The cassette tape contains the sound track

for the training material, and both teaches and tests the student (FM 44-30, 1986, p. 4.6). The

problem with this training device is that the tapes are a continuous reel, therefore random

selection cannot be made while training or testing. The training is always presented in the

same order.

4. FM 44-30

This manual is not so much a training aid or device as it is a doctrinal guide for

the conduct of visual aircraft recognition training. It is the source for a description and

explanation of WEFT theory and training guidelines and tips. This manual contains line

drawings, photographs, descriptions, and specifications of the aircraft considered to be most

relevant to SHORAD soldiers. It is the most comprehensive source of information

concerning visual aircraft recognition.

7

III. THE WEFT COGNITIVE MODEL

A. DESCRIPTION OF THE WEFT MODEL

As was discussed in Chapter II, the Wings, Engine, Fuselage, Tail (WEFT) theory is

based on isolating the specific features that are common among all aircraft, identifying these

features, and using the composite of these features to identify the specific aircraft being

viewed. This section will decribe the features that are integral to the WEFT model. The

information in this section is taken directly from U.S. Army Field Manual FM 44-30 (FM

44-30, 1986, p. 3.2 - 3.10).

1. Wings

Features of wings useful in aircraft identification include location, shape, slant,

taper, and wing-tip shape.

a. Location

The location on the fuselage at which the wing is attached is a valuable aid

in distinquishing one aircraft type from another, particularly when viewing the aircraft from

a nose-on or tail-on aspect. The usual wing positions for fixed-wing aircraft are High-Wing,

Mid-Wing, and Low-Wing.

b. Shape

Wing shapes differ and are also valuable recognition features. They are

classified according to their dihedral (slant), taper (diminishing width) and wing-tip shape.

A wing may contain any combination of slant, taper, or wing-tip shape.

8

c. Slant

The vertical angle of the wing with respect to a horizontal line drawn

through the fuselage is called wing dihedral. For recognition purposes dihedral will be

referred to as slant.

d. Taper

Aircraft may have the leading, trailing, or both edges of the wing tapered,

or the wing may be untapered.

e. Tip Shape

Wing-tip shapes are determined by the manner in which the leading and

trailing edges of a wing meet. Wing-tip shapes are classified as Square, Pointed, Rounded,

Blunt, or Curved.

2. Engine

Engine types, numbers and locations, and air intake shape and location play a

large role in the identification of a particular aircraft.

a. Propellor Aircraft

Generally, engines which drive propellors are located on or within the

fuselage, usually the nose for single-engine aircraft, and within the wing or on the leading

edge of the wing for multiengine aircraft.

b. Jet Aircraft

Generally, single-engine jet aircraft have the engine mounted inside the

rear section of the fuselage. Multiengine jet aircraft have their engines located along the sides

of the fuselage or under the wings.

9

c. Intake Location

Examples of jet air intake locations for single and multiengine aircraft

include in the wing root, outboard on the wings, beneath the wings, in the nose, in the sides

of the fuselage, and beneath the nose.

3. Fuselage

The body of an aircraft is made up of three separate and distinct sections. They

are the nose, mid, and rear sections. The canopy/cabin is also discussed when describing a

fuselage.

Nose Section

The front or forward section of the aircraft fuselage is called the nose. Nose

sections are classified by their shapes: pointed, blunt, or rounded.

b. Midsection

The center section of an aircraft fuselage is known as the midsection. This

section normally provides the space for crew compartments and internal stores. Midsections

are classified according to their shapes: slender, bulging, tubular, or thick.

c. Rear Section

The rear of the fuselage where the tail assembly is attached is known as the

rear section. Rear sections are classified by their shape: upswept, blunt, or tapered.

d. Cockpit, Cabin

The cockpit or cabin is the compartment in an aircraft that accommodates

the pilot and/or other persons. It is usually covered by a transparant canopy or glasscd-in

enclosure, and may be bubble, stepped, or flush.

10

4. Tail

Tail recognition features on aircraft consist of the tail flat (horizontal piece) and

the tail fin (vertical piece).

a. Tail Flat Position

The position of the stabilizer in relation to the fin or the fuselage is an aid

to recognition. The Tail Flat may be low, mid, or high mounted on either the tail fin or the

fuselage.

b. Tail Flat Slant

The vertical angle of the tail flat, with respect to a horizontal line drawn

through the fuselage, is referred to as slant, either positive or negative.

c. Tail Flat Shape

Tail flats usually consist of only one element and are classified like wings;

for example, tail flat shape and tail flat tip shape.

d. Fin Shape

There are many fin shapes, including unequally tapered, equally tapered,

back tapered, swept-back, round, and oval. In addition, the fin tip shape can be accounted

for.

e. Number of Fins

There are three combinations of fins usually seen on aircraft: single,

double, or triple.

B. EVALUATION OF THE WEFT MODEL

The WEFT model was first introduced in October of 1983 (Pliler, 1984, p. 16). Since

that time it has undergone rigorous evaluation by U.S. Army Air Defense units, and has stood

the test of time. In personal observation of VACR training, it was noted that those soldiers

11

who reliably recognized aircraft did so based on the WEFT characteristics of the aircraft. In

fact, some of the "experts" could identify an aircraft based solely on a verbal WEFT

description of it, without a visual image. Soldiers that had trouble identifying aircraft were

in one of two categories: either they were new soldiers, and had not yet mastered the concepts

of the WEFT theory, or they had learned to identify aircraft based on some other less reliable

means of identification. Some of the other methods used by soldiers to identify aircraft

include reliance on aircraft heading and speed, aircraft markings, and ordnance types. Each

of these is an unreliable feature.

Criticism of the WEFT method has arisen however. Jane's World Aircraft Recognition

Handbook describes mnemonic aircraft-recognition systems like WEFT as "completely use-

less, as recognition depends on the aircraft's total appearance and there is usually little

enough time to look for individual features, let alone reciting sets of letters" (Wood, 1985,

p. 5 -6). However, it is because of the limited time available to recognize an aircraft that the

discipline of the WEFT model pays off. Rather than attempting to search for a match of an

overall image of the aircraft to all of those possible, the WEFT method prunes the search

space by categorizing aircraft based on reliable, easily recognizable features. In addition, not

all features are necessary to single out a particular aircraft from all others (indeed, it is rare

that all features will be visible). In fact, even in Jane's World Aircraft Recognition

Handbook, the student is advised to "work in stages, gradually acquiring knowledge and

storing it. Like people's faces and figures, every aircraft and helicopter has its own

characteristics. It may have one engine and straight wings; four engines and swept wings;

a fat fuselage; a triangular wing; a tail plane on top of the fin; or, in the case of a helicopter,

one or two rotors" (Wood, 1985, p. 9). Aircraft in this manual are separated into chapters

based on "the main characteristics of each class of aircraft, so that the user can find his way

12

immediately to the right chapter after catching a fleeting glimpse of, say, a delta shape in the

sky" (Wood, 1985, p. 6). This categorization is analogous to the WEFT categorization, with

the exception that WEFT does not give a predetermined preference to one category over

another. This allows for a higher probabitity that an aircraft will be correctly identified given

an incomplete description or an obscured image.

13

IV. SURVEY OF INTELLIGENT TUTORING SYSTEMS

A. INTRODUCTION

Intelligent tutors are computer programs that use Artificial Intelligence (AI) tech-

niques to help a person learn. The most important part of developing an Intelligent tutor is

choosing an appropriate way of representing the knowledge to be taught. Another major

concern is how to model the student's current understanding of a topic or problem.

Intelligent tutors use inferencing mechanisms capable of reasoning from one item of

knowledge to another. Therefore, expert systems are an integral part of nearly all Intelligent

Tutors (Harmon, 1987, p. 170).

Intelligent tutors are programs that lie at the intersection of three disciplines, Computer

Science (particulary AI), Cognitive Psychology, and Education and Training (Kearsley,

1987, p. 4). Because of the different goals of researchers in each of these areas, Intelligent

Tutor Systems vary greatly in their implementation methodology and overall effectiveness.

Individuals with interest and expertise in all three disciplines are rare. Current theories of

learning are inadequate and tend to cause controversy among cognitive psychologists

(Bower & Hilgard, 1981, p. 17). So, in spite of a well developed computer science

technology base, Intelligent Tutor Systems do not exist in large numbers and are not being

used regularly by schools. Another major obstacle to the implementation and deployment

of Intelligent Tutor Systems is the bureaucratic complexity of the institutions they are

designed for (Bower & Hilgard, 1981, p. 575).

14

B. DESIGNS

Most of the current examples of Intelligent Tutor Systems can be classified by one of

five paradigms (Kearsley, 1987, p. 6). Because the Aircraft Recognition Tutor attempts to

capture an existing, proven strategy for teaching visual aircraft recognition skills, we fit the

tutor to the appropriate design paradigm rather than choosing a preferred design as the

starting point for the development of the system. The Aircraft Recognition Tutor uses the

Coach paradigm, and because both the domain knowledge and the tutorial knowledge are

well structured, this paradigm provides the best performance. In general, however, the Mi-

croworld design is the most flexible and gives the most control to the student. This design

lends itself well to unstructured knowledge domains and teaching situations where the

specific information to be taught to the student is not critical. With the Microworid

paradigm, and given a student workbook or study guide, a student can learn about the topics

that are of immediate interest to him. This increases the student's motivation to learn. The

Microworld paradigm is particulary suitable for tutor systems that attempt to cover a broad

range of subjects in a single system, or for a group of smaller tutor systems all under the

contol of a single integration system.

1. Mixed Initiative Tutors

Mixed Initiative Tutors are the oldest style of intelligent tutor systems. In this

method, the program engages the student in a two-way conversation and attempts to teach

the student via the Socratic style of guided discovery. In this teaching style, the tutor first

attempts to diagnose the student's misconceptions and errors, and then presents instruction

that will help the student to recognize the error themselves (Park, Perez, & Seidel, 1987,

p. 18). Examples of this approach include the SCHOLAR and SOPHIE programs.

15

The SCHOLAR program was a frame-based tutor which could teach students

about the geography of South America (Goldstein, 1982, p. 53). The tutor was capable of

either drilling the student in a question and answer style, or accepting questions from the

student. One of the major criticisms of SCHOLAR was that it encoded only a limited depth

of information about its domain, and made no attempt at providing the student with multiple

levels of detail (Goldstein, 1982, p. 53).

SOPHIE was a simulation tutor that taught electronic circuit diagnosis. This was,

and remains, one of the best attempts at modeling a natural language tutoring discourse

(Woolf, 1988, p. 10). The natural language parser was able to skip over "noise" words and

looked for semantic classes rather than syntactic entities (Sleeman & Hendley, 1982, p. 111).

Unfortunately, students do not always organize and talk about knowledge in a way that

reflects the way the developer of the tutor anticipated. Because of this, the tutor must look

beyond the words that the student uses and determine the true meaning of the student's

answers and queries. Failure at this results in the tutor being unable to guide the student, or

properly model the student's understanding of the topic being taught (Woolf, 1987, p. 241).

True natural language understanding eludes us even today, so most recent efforts attempt to

communicate with the student through some other type of interface.

2. Diagnostic Tutors

Diagnostic Tutors try to identify the misconceptions a student may have in

solving a problem by using a catalog of common problems. The BUGGY tutor was designed

to teach basic mathematical problem solving skills (Park, Perez, & Seidel, 1987, p. 19). This

program demonstrated that there exists a striking uniformity in the errors made by students

in a discipline that is systematic in nature (Matz, 1987, p. 47). The BUGGY tutor models

common mathematical errors, and when a student makes a mistake, attempts to identify the

16

mistake by matching the procedure that the student used in solving the problem with its

knowledge base of "buggy" procedures. Once the match is made, the tutor can explain not

only the student's error, but teach in a way that will help the student understand the problem

and its solution better.

Another example of a diagnostic tutor is PROUST. PROUST is an automatic

debugger for Pascal programs. It uses a knowledge base of programming errors in order to

detect and report bugs in a student's program. In order to do this however, PROUST must

have some understanding of what the program is supposed to do. When PROUST fails to

understand a program's goals, its ability to recognize bugs deteriorates. In fact, the

developers of PROUST are not yet sufficiently satisfied with its performance to make it

generally available to their students (Johnson & Soloway, 1987, p. 66).

3. Microworlds

Microworlds involve developing a computational tool that allows a student to

explore a problem domain. The most famous example of this paradigm is the LOGO

progranming environment. LOGO was developed by Seymour Papert of M.I.T. as a tool

for teaching mathematics and geometry to children. LOGO combines computational theory

and artificial intelligence with Piaget's theory of learning. In this theory, people learn by

naturally and spontaneously interacting with their environment (Papert. 1980, p. 156). With

this, LOGO takes an opposite approach to learning than most Intelligent Tutor Systems.

Where, in most cases, the computer is being used to teach or "program" the student, in

LOGO, the student "programs the computer and, in doing so, both acquires a sense of

mastery over a piece of the most modem and powerful technology and establishes an intimate

contact with sone of the deepest ideas from science, from mathematics, and from the art of

intellectual model building" (Papert. 1980. p. 5). Papert believes that, using the microworld

17

paradigm, students not only learn about the tutor domain, but learn about the process of

learning itself. The lack of discipline enforced by the tutor is typical of programs that use

the microworld concept; the student is left on his own to explore and discover the

relationships and truths about the knowledge domain. Inherent in this paradigm, then, is the

need for some type of supervision and assistance other than the tutor.

4. Articulate Expert Systems

Articulate Expert Systems are expert systems that can explain their decisions.

Most of these systems do not include an instructional component, and any expert system that

includes the ability to explain how it reasons could be used as a limited tutor. A complete

system that exemplifies this paradigm is GUIDON, an adaptation of the MYCIN expert

system for medical diagnosis. The adaptation revealed that although MYCIN has an

explanation facility, the explanations were "narrowly conceived" (Clancey, 1987, p. 201).

Specifically, the expert system could not explain why a particular rule was correct, and it

could not explain the strategy behind the design of its rule structure (Clancey, 1987, p. 198).

To develop GUIDON, the expert knowledge not only had to be captured, but how the expert

uses and remembers the knowledge also needed be known. With this additional information,

MYCIN's rules could be made more explicit, and then be related to GUIDON's teaching of

the heuristics used by the expert system.

5. Coaches

Coaches observe the student' s performance in some problem solving activity and

provide advice or guidance that will help the student perform better. WUMPUS is a maze

exploration game that exercises basic skills in logic and probability. Several tutors

(WUSOR-I, Wumpus Advisor) have been developed for the WUMPUS game (Goldstein,

1982, p. 54) (Kearsley, 1987, p .5). Each of these use the coach paradigm. WUSOR-I uses

18

a genetic graph to model the students performance in the game. The student progresses

through the graph as he proceeds through the maze. Based on the student's path and current

location in the genetic graph, a specific tutoring topic for instructing the student is chosen,

and with this, a means of explaining the topic is chosen based on the predecessors to the

student's position in the graph (Goldstein, 1982, p. 64). In this way, the tutor can provide

variations on explanations based on its perceived judgement of the student's needs. Thus,

a coach tutor attempts to know (1) when to interrupt the student's problem solving activity,

and (2) what to say once it has been interrupted (Burton & Brown, 1982, p. 80).

19

I Knowl.edge

Wsytem

Figure 4.1 Architecture of an Intelligent Tutor System (Harmon, 1987, p. 17 1)

C. COMPONENTS

A typical model for an Intelligent Tutoring System, shown in Figure 4.1, includes four

components, each of which can be thought of as an expert system in itself (Harmon, 1987,

p. 171).

1. The Domain Knowledge System

The Domain Knowledge System is the knowledge base for all of the expertise and

information about the subject matter to be taught. Techniques for representing the

knowledge vary greatly, and choosing the appropriate representation method is crucial to the

effectiveness of the tutor.

2. The Tutorial Knowledge System

The Tutorial Knowledge System contains the theory of the teaching method that

is used. Traditionally, computer based instruction relied on the concepts of B. F. Skinner

20

and other behavioral psychologists who developed the theory cf programmed instruction

(Harmon, 1987, p. 165). Skinner proposed a set of qualities that could be found in any good

programmed instruction: (1) A good tutor begins where the student is, and does not insist

on moving beyond what the student can comprehend, (2) A good tutor moves at a rate that

is consistent with the ability of a student to learn, (3) A good tutor does not permit false

answers to remain uncorrected, and (4) A good tutor does not lecture; instead, by his hints

and questioning he helps the student to find and state answers for himself (Bower & Hilgard,

1981, p. 566). According to Skinner's model of a teaching machine, a tutor system first

diagnoses a student to determine the skills and knowledge of the student, then presents the

instruction in a carefully programmed way so that each step can be mastered by the student

and leads him to the next step, providing immediate feedback on how well the student has

mastered the material. A student that fails to respond adequately is provided corrective

feedback or the program branches to another style of instruction. At the end of each step the

program tests the student on his overall mastery of the material, and maintains a complete

record of the student's performance for the entirety of the material covered. A system such

as this thereby provides all of the functions of assessing, teaching, and evaluating a student

in an objective, standardized manner (lano, 1987, p. 266).

3. The Student Model

The Student Model is a database that is created during the operation of the

program that reflects what the student knows and does not know about the subject matter.

Two main approaches are common in modeling the student's knowledge: (I) the tutor can

keep track of what the student has not yet shown a knowledge of, or (2) the tutor can track

what the student has demonstrated a lack of knowledge of. In an attempt to build a more

sophisticated Student Model that could more accurately reflect the state of the student's

21

understanding, some tutor systems combine both of these approaches within the Student

Model.

4. The Integration System

The heart of the system, though, is the Integration System, which uses heuristic

rules to combine the three other systems into an interface that is presented to the user, and

controls the flow of the program, which is usually non-deterministic. A wide array of

different techniques have been used to present the information to the student, including

attempts at natural language interfaces and graphical interfaces. The control of the program

has also varied from strict programmed control by the tutor to an exploratory approach where

the student has complete control over the flow of the instruction.

22

EHTER

(.E •X:M"L\

N IANDIOR I It r i OHCECT QUSO SRESONSE

OT u NOT SUFFICIENT. REEEDITI

N. PREPARED MAle"IA

VILL OELP

(IDENTIFIES ~j

NOT SUFFICIENT EDITO

Figure 4.2 Basic Tutorial Pattern (Godfrey & Sterling, 1982, p. 49)

D. BEHAVIOR

Typical behavior for an Intelligent Tutoring System is shown in Figure 4.2 (Godfrey

& Sterling, 1982, p. 49).

To begin, the program displays a rule, example, or question and prompts for a response

from the user. If the user responds correctly, it is easy enough to handle, the program simply

offers the student positive feedback and continues on with another question. However, two

possibilities exist in the event that the student responds with an incorrect answer. The easiest

to handle is an expected incorrect response. This is an incorrect response that is commonly

made by students in answering the particular question, and in this case, the programmer has

coded in a canned remediation sequence. After the student recieves the remediation, the

program continues with another question. The other case, when the student returns an

unanticipated response to the question, is the hard part, and this is where Al comes in. The

23

program responds by questioning the student in an attempt to identify where the trouble is.

Based on the students responses, the tutor either determines that some canned remediation

sequence would help the student, or that some combination of remediation is called for. After

the remediation is given, the student is again questioned and when the tutor is satisfied, it

continues on with the main flow of the program. In each case, the student model is updated

to reflect the student's understanding. A history of related wrong answers may suggest that

an adaptation of the tutoring style or content in needed. Obviously, this is the hard part in

creating an Intelligent Tutor, and is why some of the best examples have come from

individuals or teams that have backgrounds in all three of the disciplines that make up this

field. This model is a simplistic one but it is good as a general model.

E. EVALUATION CRITERIA

Intelligent Tutor Systems can be evaluated based on how well they accomplish four

main activities: modeling of knowledge and reasoning, communication, cognitive process-

ing, and tutoring (Woolf, 1988, p. 34).

1. Modeling of Knowledge and Reasoning

A good tutor will have represented the domain knowledge of the subject to be

taught in such a way that it can reason about that knowledge. It may at first seem that any

expert system should be able to do this, but as Clancey found while implementing the Guidon

tutor for the Mycin expert system, reasoning about knowledge with the goal to teach is much

different from reasoning about knowledge with the goal to diagnose or provide solutions

(Clancey, 1987, p. 196). A good tutor will not only be able to reason about and explain the

knowledge, but also understand the strategy behind the knowledge representation well

enough to provide analogies, multiple views, and levels of explanation (Clancey, 1987,

p. 201).

24

2. Communication

Tutor systems should take full advantage of the hardware capabilities for which

they were implemented. With the advanced graphics capabilities of today's computer

systems, good tutors should include some combination of simulations, animations, icons,

pop-up windows, and pull-down menus in an attempt to provide an intuitive interface to the

user (Woolf, 1988, p. 6). The student's time should be spent learning the domain being

presented instead of learning how to interact with the tutor. With the current capabilities of

independent speech recognition and synthesis systems, consideration should be given to

including this type of interface for a tutor (Gallant, 1989, p. 2). To be most effective though,

speech understanding should be included and this technology is not yet mature. Perhaps once

we can reliably understand speech as well as recognize it, the Mixed-Initiative tutor

paradigm will once again prevail.

3. Cognitive Processing

Cognitive Processing is concerned with modeling a methodology for teaching the

domain knowledge, and modeling how a student learns within that domain. This is probably

the most difficult part of creating a good tutor (Woolf, 1988, p. 7). In order to effectively

teach a student, we must know or be able to diagnose whether the student understands the

material being presented, and if not, what instructional style and content would help the

student understand. A good tutor will have a robust and flexible teaching style, so that it can

adapt to individual student motivations and capabilities. It will also have a dynamic student

model that can reason about the student's knowledge or understanding about the material.

Naturally, the more complex and fragmented the knowledge domain, the more difficult

effective cognitive processing becomes.

25

4. Tutoring

Cognitive processing leads into tutoring. Once we identify the student's

understanding of the material, tutoring takes over. Tutoring is the specific instructional style

used by the system at any given time. This includes praising, remediating, interrupting, and

presenting examples to the student (Woolf, 1988, p. 7). The best tutors attempt to respond

to the ideosyncrasies of a student in an effort to motivate the student to continue to use the

tutor. It is apparant that each of the four activities of a tutor system interact with each other

and may either enhance or detract from the effectiveness of the other activities. For example,

the tutoring activity's goal of motivating the student is greatly enhanced by a user-friendly

communication medium. but degraded if the communication medium turns the user away

from the system.

26

V. DESCRIPTION OF THE AIRCRAFT RECOGNITION TUTOR

The Aircraft Recognition Tutor was developed using Turbo Pascal v5.5 which also

provides Object Oriented Programming support. Each of the major components of the tutor

exists as an object in the program, and rr~y contain other smaller objects as variables.

Because the tutor was developed in the Object Oriented Programming paradigm, modularity

is well defined. This allows changes or improvements to be made to the individual compo-

nents of the tutor without the need to modify the remainder of the program.

A. DOMAIN KNOWLEDGE BASE

The domain knowledge is captured in a multi-media database consisting of aircraft

images stored in binary format and WEFT descriptions stored in text (ASCII) format. Each

aircraft exists in the program as a composite object, thereby encapsulating both the binary

and textual information about the aircraft, as well as the procedures and functions that are

used to operate on that information, into a single data structure. For example, an F-16

Fighting Falcon is an instance of the aircraft object class. All aircraft objects consist of a

record containing all of the WEFT information about the aircraft, and procedures for

initializing and displaying the object. In addition, the aircraft class inherits from the screen

object class, and as a type of screen object, an aircraft definition also includes a pointer to the

graphic image of the aircraft (this pointer is created in the initialization procedure), and a

procedure to hide the object (removes the graphic image from the screen).

Although it would be possible to load each of the aircraft objects into main memory

during program initialization, the objects are stored on disk and only swapped into main

27

memory when needed. Having each of the aircrafts objects defined in the system requires

a tremendous allocation of heap space, and since the program has the capability of learning

new aircraft definitions, the possibility of causing a heap overflow exists. Therefore, by

keeping the aircraft definitions on disk, with only one or two in main memory at any given

time, we minimize the memory requirement of the program at the cost of access speed to the

definitions. Even with this memory swapping, however, response time to the student is quite

acceptable.

The aircraft images that are included in the system were scanned in from FM 44-30

using the PCX file format. These images were then brought into a paint program, changing

the resolution of the image to match that used by the tutor (CGA 640x200, two colvi),

resized, and cleaned up. The images remain in the PCX format, and therefor could be easily

modified using any PCX compatible paint program.

In addition, the tutor includes a utility routine that allows new aircraft to be defined or

existing aircraft definitions to be modified. This utility consists of a simple drawing program

for creating the aircraft image combined with a menu selection for identifying the WEFT

features for the aircraft. The new aircraft image is saved in the PCX format to maintain

compatibility with the knowledge base, and thus could also be edited in a paint program. The

utility saves the new or updated definition as an aircraft object on the disk. Another utility

included within the program allows the aircraft that will be taught by the tutor to be selected

from among all those currently defined and stored on the disk. With this utility, the tutor can

be configured to teach all the aircraft defined, or any subset of those aircraft.

B. STUDENT MODEL

The student model for the system consists of two components, a persistent part and a

transient part. The persistent part of the Student Model consists of default student models

28

for each level, which are configurable by theAircraftRecognition Tutor Administrator. The

default model for the Novice Level initially consists of all of the WEFT features that are

contained in the system. It is not expected that this default model will be changed. The

default model for the Intermediate and Expert Levels consist of all of the specific aircraft to

be taught by the system. The default initially consists of 44 different aircraft (with three

views of each), but can be selected from the available number of aircraft that have been

defined for the system. This model represents what the student needs to be taught, and when

the student demonstrates the knowledge of an item in this model, it is removed.

In addition, the persistent part of the student model tracks student performance

information, as well as the student's current Mode or Level. This information includes the

number of items presented to the student, the number of correct responses, the number of

anticipated incorrect responses, and the number of unanticipated incorrect responses. The

transient part of the student model keeps track of student misconceptions. Both parts are

updated dynamically during the tutoring session, the difference being that when a session is

ended the persistent part of the student model is written back to disk and will be used by the

next session, while the transient part is deleted at the end of a session.

Each student that uses the system will have an individual student model. When a new

student is encountered (ic. a student model does not exist for the student), the student is

diagnosed by the system to determine the appropriate level and mode at which the student

should enter the system. The student is then assigned a default model corresponding to the

level, and begins a tutor session at the determined level and mode. The tutor system includes

utilities that allow the student model database to be accessed. These utilities include the

ability to delete students from the database or retrieve student administrative and perform-

ance information.

29

B. TUTORIAL KNOWLEDGE BASE

The Tutor system in the Aircraft Recognition Tutor consists of three tutoring -- ,des:

Teach, Review, and Test, and three levels: Novice, Intermediate, and Expert. Tutoring

sessions exist for each combination of mode and level, with the exception that no sessions

exist for Novice-Test and Expert-Teach. The assumptions here are that when a student has

successfully completed the Novice-Review session, he is ready for more advanced instruc-

tion and should not be delayed (the Novice level is elementary enough that it is easy to learn

and we do not want to risk boredom by keeping a student at this level for an inordinate amount

of time), and that a student that has successfully demonstrated his expertise in identifying

aircraft at the Intermediate Level need not be retaught these same aircraft (albeit from a

different point of view) in the Expert Level.

1. Novice Level

The Novice Level keys in on WEFT (Wings, Engine, Fuselage, Tail) theory, and

provides the student with the background necessary to consistently identify aircraft using a

validated cognitive model. Each WEFT category is broken down into separate subcategories

which are taught in a logical sequence by displaying a generic aircraft and modifying a

particular feature of the aircraft and identifying this feature to the student. Review consists

of randomly, but completely, displaying all of the features introduced in the Teach mode.

The student is then expected to identify these features, and the tutor takes an appropriate

course of action based on the student's response.

2. Intermediate Level

The Intermediate Level teaches the WEFT characteristics of each individual

aircraft used in the current configuration of the system by presenting a visual image of the

aircraft and identifying the WEFT features that distinguish that particular aircraft from

30

another. Similar aircraft are presented along with the aircraft currently being taught to allow

the student to firmly grasp the differences between the two aircraft. The focus of this level

is to associate in the student's mind the visual image of the aircraft with its corresponding

WEF description. Review is accomplished by randomly but completely presenting each

aircraft and allowing the student to identify the aircraft by name and nomenclature, and

taking action based on the student's response. Testing consists of presenting the student with

each aircraft in the default model, allowing the student to identify the aircraft, and

maintaining a record of the students performance.

3. Expert Level

The Expert Level reviews and tests the student based on WEFT characteristics of

the aircraft alone; no visual image of the aircraft is presented.

4. Tutorial Strategy

During a review, three possible conditions can exist when a student attempts to

identify a WEFT feature of aircraft: (1) the student may respond correctly, (2) the student

may respond with an anticipated but incorrect answer, and (3) the student may respond with

an unanticipated, incorrect answer. Each of these conditions is handled differently by the

tutor system.

In case (1), the tutor system will recognize the student for the correct answer,

remove the WEFT feature or aircraft from the persistent student model, and present another

item from the model to the student.

In case (2), the student is presented with both the feature or aircraft being

reviewed and the feature or aircraft that the student mistook it for. Both are identified to the

student, and the system performs a comparison of the two for the student so that the

differences are reinforced in the student's mind. The feature or aircraft is not removed from

31

the student model, thereby requiring the student to demonstrate identification of it again

some time later in the session. The tutor then continues with another item from the student

model.

In case (3), the feature or aircraft is identified to the student, and the student is

asked to identify specific features of the feature or aircraft. When all of the features have been

either correctly identified, or the tutor system has corrected the student, that feature or

aircraft is added to the persistent student model and a link is created in the transient student

model, storing the students misconception, so that if the student makes the same mistake

again, it will be handled as in (2) above. The tutor session then continues as in (1) and (2).

As one can see, the student model may contain duplicate items, thus the student

may have to identify a feature or aircraft several times before the system is satisfied with the

student's knowledge of that item. A student has the ability to interrupt the tutor session at

any time. In this way the student may end the tutor session, get context sensitive help, or

request that the tutor present a specific WEFT feature or aircraft. By providing the latter

facility, we allow the student to have some control over the flow of the instruction in the

program. After the student has been presented the information that he requested, control is

returned to the tutor which picks up where it was interrupted.

5. Student Evaluation

Student performance is evaluated when one of two events occur. First, if the

student model is empty, then the student has completed a session. The student's perform-

ance will indicate whether the student will move to the next Mode or Level, remain at the

current Mode or Level, or digress to the previous Mode or Level, based on heuristics included

in the system. Second, the student model is limited to twice the number of items contained

in the default model. If the student completely fills the student model to capacity, then the

32

..... ...

current session will be ended, and the student will begin a new session at the previous Mode

or Level. When the student moves to a new Mode or Level, both the persistent and transient

portions of the student model are reinitialized. If the student interrupts a session prior to

completion, the persistent model will be saved to disk, but the transient model will be lost.

A student reentering the system will be taught using the persistent model that existed when

the last session was terminated, thereby providing continuity of instruction.

D. INTEGRATION SYSTEM

The integration system consists of the user interface and a control program that acts to

direct the actions of the other three modules, including interaction between these modules.

The interface for the tutor is graphically oriented and was intentionally kept basic and

intuitive. It consists of several distinct objects: help screens to provide context sensitive help

information to the student, dialog boxes to communicate with the student, and menus to

accept information and selections from the student. "Hot" keys allow the student to easily

quit what they are doing, request help, or interrupt the tutor. In addition, the tutor system

includes a one or two player game mode in order to encourage usage of the program. The

one player game allows the student to compete against the computer, while the two player

game allows two students to compete against each other in a "Jeopardy" style game of aircraft

recognition. An aircraft is presented to the players, and the first to recognize it presses their

"button". The player is then given a chance to identify the aircraft in a menu that will appear.

A limited amount of time is allowed for the player to recognize the aircraft. The game

consists of 25 aircraft presentations. Points are awarded for a correct response, and deducted

for an incorrect response. After all 25 aircraft have been shown, the player with the highest

score is the winner. Performance in the game mode of the program is not tracked in the

student model.

33

E. IMPLEMENTATION DETAILS

As mentioned previously, the Aircraft Recognition Tutor was developed using the

Object Oriented Programming (OOP) paradigm. The benefits of OOP are the addition of

methods (procedures and functions) to abstract data types, inheritance, encapsulation,

modularity, and code reusability.

The tutor system consists of three separate programs: an install program, an unstall

program, and the tutor program itself. Figure 5.1 shows the hierarchical structure of the

Aircraft Recognition Tutor programs and units.

Program Hlterarchg,

T tttr ...t i Uetht

Instal Prrogrm

PtOgra" IrgznProgram

UnitUnitUnitt n

Figure 5.1 Hierarchical Structure of the Aircraft Recognition Tutor

A. The Install Program

This program allows the user to install the Aircraft Recognition Tutor on his hard

disk drive simply by typing a single command and switching diskettes when prompted. In

34

addition, the program checks that the user's system meets all of the requirements for running

the tutor; for example, the install program verifies that a CGA compatible graphics adapter

is present, checks for and creates a subdirectory for the tutor, insures adequate disk space is

available, etc. This program will only allow one installation of the tutor system.

B. The Unstall Program

The tutor system is designed to be installed and used on a single computer. The

system is copy protected to insure that incomplete or corrupted versions of the program are

not distributed. In order to allow movement of the tutor system from one computer to

another, the Unstall program was created. This program removes the program from the

computer that it was installed on and replaces the hidden copy protection file back on the

original floppy diskette. After running the Unstall program, the tutor system may be moved

to another computer using the Install program.

C. The Tutor Program

The Tutor itself is comprised of a main program and several units used by the

main program. These units consist of either object definitions or logically grouped functions

and procedures.

1. The Main Program

The main program initializes the user's computer to be compatible with the

tutor system. In addition, the main program presents the main menu to the user and passes

control to the other units based on the user's innut.

2. The Screens Unit

This unit defines the Screen object class. There are no instances of this

class; it exists simply to allow other classes to inherit methods and variables that they have

in common. A Screen object consists of variables to track the location and visibility status

35

of the object, a file containing the graphic image of the object, a pointer to the object, and

procedures to initialize, show, hide, and kill the object.

3. The Aircraft Unit

This unit defines the Aircraft object class. This class is a subclass of the

Screen class and inherits all of the variables and methods defined for Screen objects. In

addition, Aircraft objects consist of a record that contains all of the WEFT information about

the aircraft, and redefine the procedures and methods inherited from the Screen class.

4. The Dialogs Unit

This unit defines the Dialog object class. A Dialog object is an interaction

window that appears on the screen, either giving textual information to the user. v. providing

a location for the user to enter information. Dialog objects also inherit from the Screen class.

This class redefines the Show and Hide procedures, and includes an additional pointer which

is used to save the part of the screen image that is overwritten by the Dialog object so that

it may be restored when the Dialog object is removed.

5. The Menus Unit

Menu objects are a new class of objects; they do not inherit from any other

class. A Menu object consists of variables for the menu title, top item, selected item,

highlighted item, number of selections, an array of menu selections, a file containing the

menu information, a procedure to initialize and display the menu, and a function to get the

menu selection from the user.

6. The Student Unit

This unit defines the Student Model object, which contains all of the infor-

mation known about each individual student. An individual Student Model consists of a

student name, current mode and level, the latest test score, the persistent and transient parts

36

of the model, and the number of aircraft shown and missed during the current mode and level.

In addition, procedures to get, update, save, and kill the student model, and functions to get

and add entries to the model are defined.

7. The Tutor Unit

This unit consists of a set of procedures and functions that capture the

WEFT teaching strategy. These include procedures to diagnose the student, teach and review

the student at the Novice Level, teach, review, and test the student at the Intermediate Level,

review and test the student at the Expert Level, and evaluate the student. In addition,

functions that display individual WEFT features of an aircraft and compare WEFT features

of two aircraft are defined.

8. The Game Unit

This unit consists of procedures that control the one and two player game

modes.

9. The Help Unit

This unit defines the Help object class. Help objects inherit from the Screen

class. This class redefines the Show and Hide procedures from the Screen class and also adds

an additional pointer to save the screen that the Help object will overwrite. The procedure

to get help is not defined in the Help class definition, but exists separately within this unit.

This is because only one Help object can exist at one time, and defining the get help procedure

outside the class definition allows it to be generic for each of the Help objects.

10. The Utility Unit

This unit consists of a set of procedures that allow the administrator of the

tutor system to customize it and perform some database management activities. These

include procedures to allow the administrator to select the aircraft that will be taught by the

37

system from among those defined, to add to or modify the aircraft that are defined in the

system, to retrieve performance and administrative information about an individual student,

and to delete a student from the system.

38

VI. EVALUATION OF THE AIRCRAFT RECOGNITION TUTOR

The Aircraft Recognition Tutor can be evaluated in several ways. First, we will look

at the tutor in terms of its effectiveness as a training aid for visual aircraft recognition. For

this we will use the training guidelines described in Chapter H as a basis of evaluation'. Then

we will evaluate the Aircraft Recognition Tutor in terms of the evaluation criteria for

intelligent tutoring systems that were described in Chapter IV2.

A. AS A VACR TRAINING AID

1. Wings, Engine, Fuselage, Tail (WEFT)

The Aircraft Recognition Tutor uses the WEFT theory as a basis for the

instruction presented to the student. The student is first taught to recognize the basic

elements of WEFT theory (wings, engine, fuselage, and tail) based on the differences in their

shape, size, number, and position. The student is then taught to distinguish one aircraft type

from another based on a composite of these WEFT elements. This instruction systematically

presents the information to the student, but at the same time uses both the domain knowledge

and the student model to tailor the tutoring session to the student.

2. Simplicity

The terms used to describe the WEFT features are not technical terms, but the

common "layman" terms that most people associate with the different features. In addition,

uniformity of naming conventions and descriptions is maintained throughout the system.

'See pages 4-5.

'See pages 24-26.

39

3. Comparison

During a review session, if the student mistakes an aircraft with one that is similar

in appearance based on its WEFT features, the tutor displays both aircraft side by side so that

the student may see directly the differences that distinguish the two aircraft, and learn how

not to confuse them. The tutor then points out to the student the specific WEFT features of

the two aircraft that differ. In addition, the student is given the ability to interrupt the tutor

at any time and request that a specific aircraft be shown and described. In this way, the

student can perform a comparison of any aircraft defined in the system. This ability to

actively interact with the tutor is important to the teaching strategy. The student has a high

degree of control over the instruction, if this is desired. On the other hand, the tutor is capable

of independently presenting the entire lesson to the student.

4. Controlled Image Training

As each aircraft is presented during a teaching session, the individual components

of aircraft are presented as separate recognition features for study. The composite of these

features are then learned in order to identify a particular aircraft. During a review session,

if the student mistakes the aircraft presented for one that does not resemble it, the tutor will

ask the student to identify the separate recognition features that distinguish that view of the

aircraft, thus reinforcing controlled image training.

5. Segregation

The tutor allows students to be trained according to their ability. Since the tutor

first diagnoses a student's ability, and places him at a level in the tutor appropriate to that

ability, new students and students needing detailed instruction are taught at a different level

than more advanced students who may only need review and testing. In addition, since the

40

tutor is designed to provide individual instruction, and maintains a student model for each

student, the system tailors the training to each individual.

6. Repetition

Since the tutor operates on a personal computer, students may study at their own

convenience, as often as necessary or desired, and in periods that suit the individual. Also,

the game mode of the tutor was designed to encourage frequent use of the program.

B. AS AN INTELLIGENT TUTOR

1. Modeling of Knowledge and Reasoning

Because the Aircraft Recognition Tutor teaches a very specific knowledge

domain and relies on a well developed model for reasoning about that knowledge, and

because the knowledge is represented in object oriented style, both the knowledge and ability

to reason about it are encapsulated in a concise, coherent manner. Not only does this allow

the tutor to reason about the knowledge (eg. the tutor can compare two aircraft and decide

whether they "appear" similar enough to expect confusion by the student), but the modularity

of the knowledge base makes additions or changes to it simple and straight forward.

2. Communication

Although the Aircraft Recognition Tutor takes full advantage of the hardware

capability that it was implemented for, this remains one of the major weaknesses of the

system. Since the tutor was constrained to operate on existing U.S. Army computer

hardware, and this hardware has limited capabilities in terms of graphics resolution and

interface support, the possibilities for improvement of the interface are tremendous. The

addition of mouse support would be a major improvement, allowing a much more natural

method of selecting from the menus. Using higher resolution images of the aircraft would

give the student a more realistic impression of the aircraft. It should be noted, however, that

41

the limitations in this area were known in advance of the development of the system and are

based solely on the hardware constraints of the computers it was designed for. Additional

interface support in the software would not be difficult to provide.,

3. Cognitive Processing

Students are modeled by not only what they do not seem to understand, but also

by that which they have not yet demonstrated any knowledge. This is possible because of

the well defined knowledge domain taught by the tutor. Since the number of aircraft and

associated features taught by the system is finite, we can start a student out with a default

model based on their performance during the diagnostic phase, and then add and delete from

this model as we learn more specifically what the student does and does not know.

4. Tutoring

The instructional style used by the system varies according to the current level

and mode of the student.' A student progresses through these levels and modes, and based

on the student's performance is allowed to advance to higher levels and modes, remain at a

current level and mode, or revert to a previous level or mode.

'See pages 44-45 for a description of the types of improvement that could be made
to the interface.

'See pages 30-32.

42

VII. CONCLUSION

A. ACCOMPLISHMENTS

Over a period of six months, we have designed, developed, tested, an4 e. aluated the

Aircraft Recognition Tutor, an intelligent tutor system for visual aircraft recognition. The

system was developed using Object Oriented programming techniques, and therefore is

modular and easy to maintain. We have demonstrated that, using existing technology in

Computer Science and Artificial Intelligence, a useful training system could be developed

quickly and inexpensively for use on existing computer hardware in the field. We have

faithfully captured the WEFT cognitive model for visual aircraft recognition instruction

within a friendly medium. By distinguishing between what the student has not demonstrated

a knowledge of and what he has demonstrated a lack of knowledge about, we have developed

a student model that, unlike many others, accurately represents the current knowledge of the

student The system is effective both as a formal training system and as an informal "game"

device. Acceptance of the system among soldiers has been outstanding. Since the U.S. Army

has deployed Zenith desktop and laptop personal computers at the battalion level, and in

some cases at the company or battery level, failure to take full advantage of this equipment

for training purposes would be unforgivable. The possibilities for the development of

training applications is limited only by the imagination.

B. FUTURE IMPROVEMENT AND MODIFICATIONS

Based on the recommendations from the field evaluation, several modifications could

be implemented to improve the Aircraft Recognition Tutor.

43

1. Improvements to the Interface

Of most obvious need of improvement is the graphics resolution of the system.

Currently the tutor uses the CGA 640x200 two color mode. EGA graphics offer the

capability for a resolution of 640x350 pixels in 16 colors. This mode would allow a much

more attractive interface, but the aircraft images, although better, would still need to be line

drawings in order to show details clearly. VGA and Super VGA graphics modes (640x480

and 800x600 pixels, respectively, each with at least 16 colors) would allow the images used

by the tutor to be scanned from actual photographs of the aircraft. This would be the ideal

resolution for images that are scanned into and stored by the program as bitmaps. However,

other, perhaps better options exist, given a higher screen resolution. Next in desirability

would be to use an interactive digital video system to present actual filmed images of the

aircraft. The video system would be controlled by the tutor system, and would replace the

scanned images currently used. This would have the added benefit of greatly reducing the

amount of disk space required by the tutor. Finally, the aircraft could be represented as three

dimensional models, and manipulated through homogeneous transformations. This would

allow the aircraft to be scaled, translated, and rotated, and then displayed in any of an infinite

number of aspects, and would also require much less disk space than the images currently

used. Combined with this could be a terrain and cloud database that allow the aircraft to be

displayed superimposed or overlayed with a more realistic environment. This would provide

the ability to partially obscure the aircraft, something that is likely to occur in reality.

Another major improvement would be the integration of mouse support with the

interface. In fact, this is a very simple improvement that has been made to one version of the

tutor already. Unfortunately, since the hardware that the tutor was designed for does not

include a mouse, this feature was left out of the final product. Thought was also given to

44

using a speech recognition system as the primary interface between the student and the tutor,

but the rarity of these systems in the field, as well as the lack of compatibility among them,

prevented this from being reasonable.

2. Improvements to the Tutoring Strategy

Additional characteristics could be tracked by the student model, in order to

provide a more accurate understanding of the student's knowit ge of the domain. For

example, once the student is in the intermediate mode, the tutor assumes that the student has

mastered the individual WEFT characteristics, and no longer tracks the student's perform-

ance in this area. However, since the student is sometimes asked to identify the specific

WEFT features of an aircraft that he was unable to identify correctly, the ability mad perhaps

the need to track this information exists. Currently, if a student reverts to a previous level

or mode, he is assigned the default model for that level or mode. By tracking characteristics

of all of the levels and modes at all times, the tutor could better teach the student at any level

or mode.

Additional teaching styles could be implemented. This would allow the tutor to

teach a student in a different manner if it appears that the student is having trouble with the

current teaching style. The tutor currently teaches in a different style for each level and

mode, but within a particular level and mode, only one teaching strategy is used. If the

student fails to respond to this strategy, the tutor will revert them to a previous level or mode

for additional preparation before returning to the current level or mode.

C. POSSIBLE ADAPTATIONS

Several training subjects are directly comparable to VACR and therefore represent an

opportunity for adaptation of the Aircraft Recognition Tutor. Helicopter recognition is

taught in the same manner as fixed-wing aircraft recognition, and the tutor could be modified

45

easily to teach this subject by defining the additional WEFT characteristics common among

helicopters and defining the helicopter objects. This could be done by adding onto the

existing knowledge domain, or by substituting directly a new knowledge domain for

helicopters. Armored vehicle recognition and ship/submarine recognition represent other

subjects that the tutor could teach with an adjustment of the tutorial strategy and defining the

appropriate knowledge domain objects.

46

APPENDIX A - CODE

I
Aircraft Recognition Tutor
program by Larry W. Campbell
1990

No warranties whatsoever are provided with this program. Use at own risk.

This program may be used or modified under the following conditions:
1. Any modified program will include the author's name in the program.
2. A copy of the modified program will be provided to the author.

Send comments, suggestions, bug reports, or modifications to:
CPT Larry W. Campbell
SMC 2269
Naval Postgraduate School
Monterey, CA 93940

E-Mail at campbell@cs.nps.navy.mil
I

program ART;

uses CRT, Graph, Screens, Dialogs, Menus, Tutor, Game, Utility, Student, Help;

type
name = string[20];

var
TempScreen, BinoScreen : Screen;
HelpItem : HelpScreen;
MainMenu : Menu;
HelpMenu : Menu;
GraphDriver, GraphMode, ErrorCode, ChoiceNum "Integer;
Choice : name;
Ch : char;
F : text;
FileName : string;

procedure HallofFame;
var FameName : name;
X,Y : integer;

begin

47

TempScreen.Init('hallfame.scr');
TempScreen.Show(O,0);
Assign(F,'HallFame.rec');
Reset(f);
SetColor(1);
X :. 50;
Y: 30;
while (not eof(f)) and (X < 600) do

begin
Readfln(F, FameName);
OutTextXY(X,YFameName);
Y: Y + 10;
if Y -200 then

begin
X :- X + 200;
Y :=30;

end;
end;

Oh :=Read Key;
SetColo'(0);
ClearDevice;
TempScreen. Kill;
Close(f);

end;

procedure RunTutor;
begin {RunTutor)

BinoScreen.Show(0,0);
TutorSession;
BinoScreen. Hide;

end; (RunTutor)

procedure RunGame;
begin (RunGame)

BinoScreen.Show(0,0);
PlayGame;
BinoScreen. Hide;

end; (RunGame)

procedure GetHelp;
begin (GetHelp)

Choice :- HelpMenu.GetChoice;
while (Choice <> 'EXIT HELP!') and (Choice <> 'null') do

begin
iR Choice = 'ABOUT HELPI' then

HelpItem. lnit('help.hlp')
else iN Choice . 'TUTOR HELPI' then

Help Rem.lInit('tutor.hlp')

48

else if Choice ='GAME HELP!' then
Helpitem. Init('game.hlp')

else if Choice = 'SETUP/UTILITY HELP!' then
Helpitem. lnit('setup.hlp');

HelplItem. Show(O,O0);
Oh: ReadKey;
Helpltem.Hide;
Helpltem.KilI;
GotoXY(1 ,1);
Choice: HelpMenu.GetChoice;

end;
end; (GetHelp)

begin (Main Program)
(Initialize Graphics Adapter to CGA 640x200 2-color mode)
GraphDriver := CGA;
GraphMode := CGAHi;
lnitGraph(GraphDriver, GraphMode,)
Set BkColor(Green);
(Load the graphics and data into memory)
TempScreen. lnit('initial.scr');
Binocreen. lnit('main .scr');
Main Menu. Init('Main. mnu');
HelpMenu. lnit('Help. mnu');
(Display the Initial Title Screen)
TempScreen.Show(O,Q);
Oh := ReadKey;
TempScreen. Hide;
TempScreen. Kill;
Hallof Fame;
(Display the Initial Menu Screen and Get a Response)
StudentModel. Mode:="
Choice: MainMenu.GetChoice;
while (Choice <> 'EXIT') and (Choice <> 'null') do

begin
if Choice = 'TUTOR SESSION' then .3unTutor
else it Choice = 'GAME' then RunGame
else if Choice = 'HELP!' then GetHelp
else if Choice = 'SETUP' then SetUp;
GotoXY(1,1);
StudentModel. Mode:
Choice := Main Menu. GetChoice;

end;
(That's all folks)
Binocreen. Kill;
CloseGraph;

end. (Main Program)

49

unit Screens;

interface

uses Graph;

type
Screen = object

X,Y :integer;
lsVisible :boolean;

F :file;
Memize: word;
P :pointer;
constructor lnit(FileName string);
procedure Show(XLOC, YLoc :integer);
procedure Hide;
destructor Kill;

end;

implementation

constructor Screen.lInit(FileName :string);
begin

lsVisible :=false;
Assign(F, FileName); (Prepare the file)
Rese(ff, 1);{for a read operation.)
Memize: FileSize(F);{Determine memory needed)
GetMem(P, MemSize);{and allocate the memory on the heap.)
BlockRead(F, PA, MemSize);{(Read in the graphic pic file)
Close(F);{and close the file.)

end;

procedure Screen. Show(X Loc, YLoc: integer);
begin

if not lsVisible then
begin

X :=XLoc;
Y := YLoc;
Putlmage(X,Y, PA, CopyPut);Draw the graphics on the screen.)
lsVisible :=true;

end;
end;

procedure Screen. Hide;
begin

if lsVisible then
begin

Putlmage(X,Y,PAXorPut);(Turn all pixels off.)

50

lsVisible :- false;
end;

end;

destructor Screen. Kill;
begin

FreeMem(P, MemSize);{Free the heap memory.)
end;

end.

51

unit Aircfts;

interf ace

uses Graph, POXTP, Screens;

type
name = string[20J;

ACData = record
AircraftName :name;
ExampleOf : name;
Exampleinfo :name;
Wings: array 1.-41 of name;
Wingslnfo: array [1.-4] of name;
Engine : array [1-.2] of name;
Engineinfo :array [1. .2] of name;
Fuslag : array [1-.4] of name;
Fuslaginfo :array [1.-4] of name;
Tail :array [1.-51 of name;
Tailinfo : array [1-.51 of name;

end;

Aircraft =object(Screen)
vptr : longint;
F1l text;
AC Info : ACData;
constructor Init(ACName : name);
procedure Show(XLoc, YLoc : integer);
procedure Hide;
procedure Kill;

end;
var

retcode :integer;

implementation

constructor Aircraft. lnit(ACName :name);
var

Counter :integer;
begin

IsVisible := false;
retcode :=pcxCreate Virtual(pcxCMM,@vptr,pcxCGA 6,250, 110);
if (retcode = pcxSuccess) then

retcode:= pcxFileVirtual(Concat(ACName,'.pcx'),vptr);
Assign(F1 ,Concat(ACName,'.dat'));
Reset(F1);
Readln(F1 ,AClnfo.AircraftName);

52

Readfn(F1 ,AClnto. Example~f);
Readln(F 1,AClInfo.ExamplelInfo);
for Counter :- 1 to 4 do

begin
Readln(F1 ,AClnfo.Wings[Counter);
Readln(F1 ,AClnfo.Wingslnfo[Couflterl);

end;
for Counter :- 1 to 2 do

begin
Readln(F1 ,AC Into. Engine[Counter]);
Readln(F1 ,AClInfo. Engine lnfo[Counter]);

end;
for Counter :- 1 to 4 do

begin
Readln(F1 ,ACInfo.Fuslag[Counterl);
Readln(Fl1,ACinfo.Fuslaglnfo[Counter);

end;
for Counter :=1 to 5 do

begin
Readln(F1 ,AClnfo.Tail[Counter]);
Readln(F1 ,AClnfo.Taillnfo[CounterJ);

end;
Close(F1);

end;

procedure Aircraft. Show(XLoc, YLoc: integer);
begin

if not IsVisible then
begin

retcode :=pcxSetDisplay(pcxCGA-6);
X :=XLoc;
Y: YLoc;
retcode: PCXPutlmage(vptr,pcxXORX,YO);
IsVisible :=true;

end;
end;

procedure Aircraft. Hide;
begin

if lsVisible then
begin

retcode := pcxSetDisplay(pcxCGA..6);
retcode :. PCXPutlmage(vptr,pcxXOR,X, Y,O);
lsVisible :- false;

end;
end;

procedure Aircraft.Kill;

53

begmin
lsVisible :.- false;
retcode :=pcxDestroyVirtual(vptr);

end;
end.

54

unit Dialogs;

interface

uses Graph, Screens;

type
Dialog - object(Screen)

OldP :pointer;
procedure Show(XLoc, YLoc: integer);
procedure Hide;

end;

implementation

procedure Dialog.Show(XLoc,YLoc: integer);
begin

Rf not lsVisible then
begin

X :- XLoc;
Y := YLoc;
GetMem(OldP, MemSize);{Save the old bitmap)
GetlImage(X, Y,X+200, Y+50, OldPA);
Putlmage(X, YPA, CopyPut);(and draw the new bitmap.)
Is Visible :=true;

end;
end;

procedure Dialog. Hide;
begin

if lsVisible then
begin

Putlmage(X, Y,OldPA,CopyPut) ;{Put the old bitmap back)
FreeMem(OldP, MemSize);{and free the heap memory.)
lsVisible :. false;

end;
end;

end.

55

unit Menus;

interface

uses CRT, Graph, Help;

type
name - string(201;

Menu = object
MenuTitle :string;
X, Y,Color,Top Rem,Selecteditem, High Lghtedltem integer;
Numelections: integer;
Men uSelection: array[1 ..1 50] of name;
F :text;
constructor lnit(FileName :name);
function GetChoice : name;

end;

var
LastSelection : integer;

implementation

const
MaxSelections = 10;

var
Oh :char;
Counter : integer;

constructor Menu.Ilni!(FileName :name);
begin

Highlightedltem := 1;
Selecteditem :- 1;
TopItem 1;
Counter :=0;

Assign(F,FileName);
Reset(F);
Readln(F,MenuTitle);
Readln(F.X);
Readln(F,Y);
Readln(F,Color);
while (not eof(F) and (Counter <c 1 50)do

begin
Counter := Counter + 1;
Readln(F, MenuSelectionjCounterl);

end;

56

Numelections: Counter;
Close(F);

end;

function Menu.GetChoice: name;

procedure ShowMenu(Selection integer);
begin

Set~olor(Color);
SetLineStyle(SolidLn,0,ThickWidth);
SetWriteMode(CopyPut);
SetTextJusif(CenterText,CenterText);
OutTextXY(X,Y, MenuTitle);
Counter :- 0;
while (Counter + Selection <- Numelections) and
(Counter + Selection < Selection + MaxSelections) do

begin
OutTextXY(X, Counter*8+Y+ 15, MenuSelection[Counter + Selection]);
Counter :. Counter + 1;

end;
if (Selection > 1) and (Selection <. Numelections - 10) then

OutTextXY(X, Y+ 1 0O,'Pg Up/Pg Dn')
else if Selection > 1 then

OutTextXY(X,Y+l 00,'PgUp')
else if Selection <= Numelections - 10 then

OutTextXY(X,Y+1 00,'PgDn');
end;

procedure KillMenu;
begin

if Color <> 0 then
SetColor(0);

Set WrfteMode (Copy Put) ;
Line(X-50,Y-3,X+50,Y-3);
Line (X-50, Y, X+50, Y);
Line(X-50,Y+3,X+50,Y+3);
for Counter :. 1 to 10 do

begin
Line (X-85,Counter*8+Y+3, X+85 ,Counter*8+Y+3);
Line (X-85, Counter*8+Y+6, X+85,Counter*8+Y+6);
Line (X-85, Counter*8+Y+9, X+85, Counter*8+Y+9);

end;
Line(X-35,Y+97,X+35,Y+97);
Line(X.-35,Y+1 00,X+35,Y+1 00);
Line(X-35,Y+1 03,X+35,Y+1 03);

end;

procedure Highlight(Newftem :integer);

57

begin
setwnteMode(XorPut);
SetColor(1);
Lifl0(X85,Highlightedtem8+Y+3,X+85,Highlightedltem*8+Y+3);
Line(X-85, Highlightedltem'8+Y+6,X+85,Highlihtedltem8+Y+6);
Lifle(X85,Highlightedltem'8+Y+9,X+85,Highlightedltem*

8+Y+9);
if HighUghteditem <> Newitem then

begin
Highlighted Item :. Newltemn;
Line(X-85,NewfterIV8+Y+3,X+85,Newltem*8+Y+ 3);
Une(X-85,Newltem8+Y.6,X+85,NewiteflV8+Y+ 6);
Line(X-85,NewItemV8+Y+9,X+85,Newtem*8+Y+ 9);

end;
end;

procedure PageUp;
begin

if TopItem > MaxSelections then
begin

KilIMenu;
Selected Item :=(Selecteditem - 10) -

(HighlightedItem - 1);
Topltem :=Topitem - 10;
Highlighted Item := 1;
ShowMenu(Topltem);
Highlight(Highlightedltem);

end;
end;

procedure PageDown;
begin

if Topitemn + MaxSelections <. Numelections then
begin

KilIMenu;
SelectedItemn :. (Selecteditem + 10) -

(Highlightediteni - 1);
Topltem :. Topitem + 10;
Highlighteditem: 1;
Show Menu(Topltem);
Highlight(Highlighteditem);

end;
end;

procedure MoveUp;
begin

if Highlightedltemn> 1 then
begin

Highlight(Highlightedlteml - 1);

58

Selecteditem :- Selecteditem - 1;
end;

end;

procedure MoveDown;
begin

if (Highlightedltem < MaxSelections)
and (Selected hem < Numelections) then

begin
Highlight(HighlightedlItem + 1);
Selectedltem :- Selecteditem + 1;

end;
end;

procedure Getinput;
begin

Oh: ReadKey;
Case Ch of

W:GetHelp;
chr(80),chr(50) MoveDown;
chr(72),chr(56) MoveUp;
chr(81),chr(51) PageDown;
chr(73),chr(57) PageUp;

end;
end;

begin
ShowMenu(1);
Highlight(1);
repeat

Getinput
until (Oh = #13) or (Oh =#27);

Rf Oh = #27 then
GetChoice :'null'

else
GetChoice := MenuSelection[Selecteditem];

LastSelection :=SelectedItem;
KillMenu;
Topltem := 1;
Selecteditem 1;
Highlightedltem :- 1;

end;

end.

59

unit Student;

interface
type

name = string [201;

Model = object
StudentName, Mode, Level: name;
TestScore integer;
NumShown, NumMissed integer;
ACArray : array [1 ..150] of name;
MissedArray : array [1 ..150] of name;
function Get: boolean;

procedure Update(StuName: name;NewMode• name; NewLevel• name; NewScore integer);
procedure Save;
function GetEntry(MaxNum integer) :integer;
function AddEntry(ACName name; MaxNum :integer) boolean;
procedure Kill;

end;

var
StudentModel : Model;

implementation

uses DOS, CRT, Graph, Dialogs;

var
FileName: name;
Deleted: boolean;
F text;
S pathstr;
Ch : char;
Counter :integer;
DialogScreen : Dialog;

function Model.GetEntry(MaxNum integer) integer;
begin

Randomize;
Counter := 1;
while (StudentModel.ACArray[Counter] = ") and (Counter <= MaxNum) do

Counter := Counter + 1;
if Counter < MaxNum then

begin
Counter :- Random(MaxNum - 1);
while StudentModel.ACArray[Counter + 1] =" do

Counter := Random(MaxNum);

60

GetEntry :Counter + 1;
end

else GetEntry :0;
end;

function Model.AddEntry (AC Name: name; MaxNum :integer): boolean;
begin

Counter :. 1;
while (StudentModel.MissedArray[Counter <> ") and (Counter <.. MaxNum+1) do

Counter :=Counter + 1;
if Counter <. MaxNum then

begin
StudentModel. MissedAfray[CounterJ ACName;
AddEntry true;

end
else AddEntry :-false;

end;

function Model.Get: boolean;
const

ALPHA = [A.''''.z]
NUM = ['0'. .'9'];

begin {GetStudentModel)
Deleted: false;
FileName :. ";

Counter := 1;
DialogScreen. lnit('Model.dlg');
DialogScreen.Show(220,25);
while Counter <.=6 do

begin
Ch := ReadKey;
if (Counter = 1) and (Ch in ALPHA) then

begin
OutTextXY(290+1 O*Counter,68,Ch);
FileName := Concat(FileName.Ch);
Counter :. Counter + 1;

end
else if (Counter > 1) and (Counter < 6) and (Ch in NUM) then

begin
OutTextXY(290+10Otounter,68,Ch);
FileName := Concat(FileName,Ch);
Counter :=Counter + 1;

end
else if (Ch . #8) and (Counter > 1) then

begin
SetColor(1);
Line(275+10OCounter,64,285+ 10 *Counter,64),
Line(275+ 1 O*Counter,67,285+ 1 O*Counter,67);

61

Line(275+1 O*Counter,70,285+1 0*Counter,70);
Counter :- Counter - 1;
FileName: Copy (FileName,1, .Counter- 1);
SetColor(0);

end
else if (Counter - 6) and (Oh =#13) then

Counter :=Counter + 1
else

begin
Sound(440);
Delay(1 00);-
NoSound;

end;
end;

DialogScreen. Hide;
DialogScreen. Kill;
S := FSearch('.',Concat(FileName, '. mdl'));
if S = " then

begin
Get :=false;
Exit;

end
else

begin
Assign(F,Concat(FileName,'.mdl'));
Reset(F;
Readln(F,StudentModel.StudentName);
Readln(F,StudentModel. Mode);
Readin(F,StudentModel. Level);
Readln(F,StudentModeI.TestScore);
Readln(F,StudentModel.NumShown);
Readln(F,StudentModel. Numissed);
for Counter :- i to 150 do

Readln(F,StudentModel.ACArray[Counter]);
for Counter := 1 to 150 do

Readln(F,StudentModel. MissedArray[Counter]);
Close(f);

end;
Get :=true;

end; (GetStudentModel)

procedure Model. Update(StuName name; NewMode name; NewL-evel name; NewScore
integer);
begin (Update)

if NewL-evel = Novice' then
Assign (F, 'Novice.def)

else
Assign(F,' lntermed.def');

62

Reset(F);
Readln(F,StudentModel.StudentName);
Readln(F,StudentModel. Mode);
Readln(F, StudentModel. Level);
Readln(F,StudentModel.TestScore);
Readln(F,StudentModel.NumShown);
Readln(F,StudentModel.NumMissed):
for Counter :=1 to 150 do

Readln(F,StudentModel. ACArray[Counter]);
for Counter :=1 to 150 do

Readln(F,StudentModel .MissedArray[Counterl);

Close(f);
StudentModel. StudentName :=Stuame;
Studentodel.Mode: NewMode;
StudentModel. Level :=Newl-evel;
StudentModel.TestScore: NewScore;

end; (Update)

procedure Model.Save;
begin

if not Deleted then
begin

Assign(F,Concat(FileName,'.mdF'));
Rewrite(fl;
Writeln(F,StudentModel.StudentName);
Writeln(F,StudentModel. Mode);
Writeln(F,StudentModel. Level);
Writein (F,StudentModel.TestScore);
Writeln(F,StudentModel.NumShown);
Writejn(F, StudentodeNumMissed);
for Counter :=1 to 150 do

Writeln(F,StudentModel .ACArray(Counter]);
for Counter :=1 to 150 do

Writeln(F,StudentModel. MissedArray[Counterl);
Close(f);

end;
end;

procedure Model.Kill;
begin

Exec('\COM MAN D. COM,Concat(f/C del' ,FileName,'.mdl'));
Deleted :=true;

end;

end.

63

unit Tutor;

interface
procedure TutorSession;

implementation

uses CRT, Graph, Student, Aircfts, Dialogs, Menus, Help;

type
name = string[201;

var
Counteri, Counter2, Counter3, MaxNum, ChoiceNum, Score: integer;
Comparison: real;
Ch :char;
LeffAC, RightAC: Aircraft;
DialogScreen :array [1-.51 of Dialog;
WEFTMenu: Menu;
Stuame, Choice, FourthCh :name;
CorrectAnswer, CloseAnswer, Done: boolean;

procedure ShowFeature(Feature :name);
begin {ShowFeature)

if Feature <> " then
begin

DialogScreen[4J. lnit(Concat(Feature, '.dlg'));
DialogScreen[4].Show(1 0,30);
Ch :=ReadKey;
while Ch = 'h' do

begin
GetHelp;
Ch :=ReadKey;

end;
DialogScreen[4]. Hide;
DialogScreen[4]. Kill;

end;
end; {ShowFeature)

function CompareAircraft :real;
begin {CompareAircraft)

Comparison := 0;
Counter3 :=0;
for Counter2 := 1 to 4 do

if (LeftAC.AClnfo.Wings[Ccunter2j <>) and
(RightAC.AC Info. Wings[Counter2] <> I') then

if LeftAC .AC Info. Wings[Counter2j =RightAC.AC Info. Wi ngs[Counter2] then
begin

64

Comparison := Comparison + 1;
Inc(Counter3);

end
else Inc(Counter3);

for Counter2 :- 1 to 2 do
it (LeftAC.AClnto.Engine[Counter2] <> ") and

(RightAC.AC Info. Engine[Counter2] <> ") then
if LeftAC.AClInfo. Engine[Counter2j = RightAC.ACinfo. Engine[Counter2J then

begin
Comparison :- Comparison + 1;
Inc(Counter3);

end
else lnc(Counter3);

for Counter2 :- 1 to 4 do
if (LeftAC.AClInfo. FuslagICounter2l <> ") and

(RightAC.ACInfo.Fuslag[Counter2] <> ") then
if LeftAC. AClInfo. Fuslag[Counter2j -RightAC .AC Info. Fuslag[Counter2J then

begin
Comparison :=Comparison + 1;
lnc(Counter3);

end
else lnc(Counter3);

for Counter2 := 1 to 5 do
if (LeftAC. ACInto. Tail[Counter2j <> ") and

(RightAC.ACInfo.Tail[Counter2] <> ") then
if LeftAC .AC Info .TaiI[Counter2J = R ightAC.AC Info. Tail[Counter2J then

begin
Comparison := Comparison + 1;
Inc(Couriter3);

end
else Inc(Counter3);

CompareAircraft: Comparison/Counter3;
end; {CompareAircrat

procedure Diagnose;
const

ALPHA = [A.T''.J
begin

Studentodel.Mode: 'Diagnose';
Stuame:="
Counteri := 1;
SetColor(1);
DialogScreen1 1. InitCGetName.dlg');
DialogScreenf 1].Show(220,25);
Line(220,64,420,64);
Line(220,67,420,67);
Line(220,70,420,70);
while (Ch <> #1 3) and (Counter 1 <21) do

65

begin
Ch :. ReadKey;
it Oh = chr(32) then

begin
Stuame Concat(StuName,chr(32));
Countedi: Counteri + 1;

end;
if Oh in ALPHA then

begin
SetColor (0)
OutTextXY(225+10O*Counterl ,68,Ch);
Stuame := Ooncat(StuName,Ch);
Counteri :- Counteri + 1;
SetColor(1);

end;
if (Oh = #8) and (Counterd > 1) then

begin
SetColor(1);
Line(21 0+1 Q*Counterl ,64,220+1 0*Counterl,&4);
Line(21 0+1 O*Counterl ,67,220+10OCounterl ,67);
Line(21 0+1 O*Counterl ,70,220+1 0*Oounterl ,70);
Counteri : Countedi - 1;
Stuame: Copy(StuName,1 ,Counterl-1);
SetColor(0);

end;
end;

DialogScreentl 1].Hide;
DialogScreen~l J. Kill;
SetColor(0);
StudentModel. Update(StuName,'Teach',' Novice' ,0);
StudentModel. Mode :='Diagnose';
MaxNum: 75;
Counter3 :=0;
DialogScreenf 1. lnit('Welcome.dlg');
DialogScreen[1 J.Show(220,25);
Oh: ReadKey;
while Oh = 'h' do

begin
GetHelp;
Oh: ReadKey;

end;
DialogScreen[1].Hide;
DialogScreeni 1]. Kill;
Rf Oh = #27 then Exit;
DialogScreen[1). Init('Diagnose.dlg');
DialogScreeni J.Show(220,25);
Oh ;= ReadKey;-
while Oh = h' do

66

begin
GetHeip;
Oh: ReadKey;

end;
DialogScreen[1].Hide;
DialogScreen (1].Kill;
if Oh - #27 then Exit;
for Counter2 :=1 to 10 do

begin
Counteri : StudentModel.GetEntry(MaxNum);
if StudentModel.ACArray[CounterlJ <> " then

begin
LeftAC. lnit(StudentModel.ACArray[Counterl)
Hf LeftAC.AC Info. Exampleinf o <> " then

begin
LeftAC .Show(25,72);
WE FTMenu. lnit(Concat(Copy(LeftAC.AClInfo. ExampleInfo, 1, 5),'. mnu'));
Choice: WEFTMenu.GetChoice;
if Choice = 'null' then

begin
LeftAC. Hide;
LeftAC. Kill;
Counter3 :=Counter3 + 1;
Exit;

end;
if Choice <> LeftAC.AClInfo. ExampleOf then

begin
Counter3 := Counter3 + 1;
Sound(1 00);
Delay (200);
NoSound;

end;
LeftAC. Hide;

end;
LeftAC .Kill;

end;
GoToXY(1, 1);

end;
if Counter3 <= 1 then

StudentModel.Update(StuName,'Teach ,'lntermediate',0)
else StudentModel. Update(StuName,'Teach', 'Novice' ,0);

end;

procedure Teach;
begin (Teach)

Oh := #13;
if StudentModel. Level - 'Novice' then

MaxNum: 75

67

else MaxNum :- 150;
if StudentModel. Level = 'Novice' then

DialogScreen(1 J.Init('TeaNov.dlg')
else DialogScreen[1J.lnit('Tealnt.dlg');
DialogScreen[1 J.Show(220,25);
Oh :- ReadKey;
while Oh = 'h' do

begin
GetHelp;
Oh :- ReadKey;

end;
DialogScreenil 1].Hide;
DialogScreen[1].Kill;
if Oh - #27 then Exit;
for Counteri :- StudentModel.NumShown to MaxNum do

if StudentModel. Level = 'Novice' then
begin

if StudentModel.AOArray[Counterli <> " then
begin

LeftAO . nit(StudentModel .ACArray(Oounterl J);
if LeftAO.AC Info. ExamplelInfo <> " then

begin
LeftAC.Show(25,72);
ShowFeature (LeftAO.AC Info. ExamplelInfo);
LeftAC.Hide;

end;
LeftAO. Kill;
if Oh - *27 then Exit;
Inc(StudentModel. NumShown);

end;
end

else
begin

if StudentModel.AOArray[Counterl] <> then
begin

LeftAO. lnit(StudentModel.ACArray[Counterl)
LeftAO.Show(25,72);
DialogScreen[2]. lnit(Concat(Oopy(StudentModel.ACArray[Counterl 1,4).' .nam'));
DialogScreen[2]. Show(50, 179);
for Oounter2 :=1 to 4 do

4 Oh <> #27 then
ShowFeature(LeftAO.AO Info.Wingslnfo[Counter2]);

for Oounter2 := 1 to 2 do
if Oh <> #27 then

ShowFeature(LeftAO AC Info. Enginelnfo[Counter2j);
for Oounter2 := 1 to 4 do

if Oh <>#27 then
ShowFeature(LeftAO.AOInfo.Fuslag lnfo[Oounter2j);

68

for Oounter2 :- 1 to 5 do
if Oh <> #27 then

ShowFeature(LeftAC.AClnfo.Tail lnfo(Counter2J);
DialogScreen[2J. Hide;
LeftAC.Hide;
DialogScreen[2). Kilt;
LeftAC.Kill;
it Oh - #27 then Exit;
Inc(StudentModel.NumShown);

end;
end;

StudentModel.NumShown :. MaxNum;
end; (Teach)

procedure ReviewNovice;
begin (ReviewNovice)

MaxNum :- 75;
Done := false;
DialogScreenllJ.tnit('Return.dlg');
DialogScreenhl].Show(220,25);
Oh :- ReadKey;
while Oh = h' do

begin
GetHelp;
Oh: ReadKey;

end;
DialogScreenil].Hide;
DialogScreen [1].Kill;
if Oh = #27 then Exit;
EiaogScreenllinitVRevNov.dig');
DialogScreenji J.Show(220,25);
Oh := ReadKey;
while Oh = h' do

begin
GetHelp;
Oh := ReadKey;

end;
DialogScreenji].Hide;
DialogScreen [1].Kill;
if Oh = #27 then Exit;
Counteri *- StudentModel.GetEntry(MaxNum);
while (Counteri <> 0) and (Done - false) do

begin
LeftAO.lnit(StudentModel.AOArray[Counterl]);
if LeftAO.AC Info. Example Info <> " then

begin
LeftAO.Show(25,72);
WEFTMenu. lnit(Ooncat(Copy(LeffAO.A~lnfo.Examplelnfo, 1,5),'.mnu'));

69

Choice :. WEFTMenu.GetChoice;
iN Choice .LeftAC.AC Info. ExampleOf then

begin
StudentMociel.ACArray[Counterl :-;
DialogScreen[1 J.Init(Concat('Coffect' ,Chr(Random(1 O)+48),'.clg'));
DiaiogScreen[1].Show(220,25);
Oh :. ReadKey;
while Oh - 'h' do

begin
GetHelp;
Oh :. ReadKey;

end;
DialogScreen [1 I.Hide;
DialogScreen [1].Kill;

end
else if Choice <> 'null' then

begin
iR StudentModel.AddEntry(StudentModel.ACArray[Counterl 1 MaxNum) -false

then
Done :=true;

DialogScreen[i 1. lnt(Concat('Wrong', Chr(Random(l 10)+48), '. dlg'));
DialogScreen[1].Show(220,25);
ShowFeature(LeftAC. AClInfo. Exampleint 0);

if Oh _ 'h' then
GetHeip;

DialogScreen[1].Hide;
DialogScreen[1].Kill;

end;,
LeftAC.Hide;

end
else StudentModel.ACArray[Counterl] =~
LeftAC.Kill;
if (Oh - #27) or (Choice = 'null') then Exit;
Counteri : StudentMode.GetEntry(MaxNum);

end;
Done :. true;

end; (ReviewNovice)

procedure ReviewIntermediate;

procedure Handleorrectintermediate;
begin (HandleCorrectlntermediate)

DialogScreen[1). nit(Ooncat('Correct',Chr(Random(1 O)+48),'.d~g'));
DialogScreenji j.Show(220,25);
DialogScreen[2). lnit(Ooncat(Oopy(StudentModel.AOArray[Coounter1 1,4), '.nam'));
DialogScreen[2J.Show(50, 179);
StudentModel. AOArray[OounterlJ ="
Oh :. ReadKey;

70

while Oh . h' do
begin

GetHelp;
Oh :- ReadKey;

end;
DialogScreen(2. .Hide;
DialogScreen[2J. Kill;
Dialogereenhl).Hide;
DialogScreen [1].Kill;

end; (HandleCorrectintermfediate)

procedure Handleloselntemnediate;
begin {Handle~loselntermediate}

RightAO.Show(365,72);
DialogScreenhl J.lnt(Close.dlg');
DialogScreen[1].Show(220,25);
Oh :-Readkey;
if Oh = h' then

GetHelp;
DialogScreen[1].Hide;
DialogScreenil].Kill;
if Oh = #27 then

Exit;
DialogScreen~1 J.lnit(OCompare.dlg');
Dialog Screenji J.Show(220,25);
DialogScreen21. lnt(Ooncat(Oopy(StudentModel.ACArray(Oounterl ,1,4),'. nam'));
if Copy (Ohoice,4,I) = 'then

DialogScreen(3J. lnit(Ooncat(Oopy(Ohoice, 1,3) ,'_','.nam'))
else DialogScreen[3J. lnit(Concat(Oopy (Choice, 1 ,4),'. nam'));
DialogScreen[2J.Show(50,1 79);
DialogScreen[3J.Show(390, 179);
Oh := ReadKey;
while Oh = 'h' do

begin
GetHelp;
Oh :=ReadKey;

end;
for Counter2 :=1 to 4 do

if (LeftA.AClnfo.Wings[Oounter2j <> ") and (Oh <> #27) and
(RightAC. AC Info. Wings[Oounter2] <>I') then

if LeftAC .AO lnfo.Wings[Oounter2J <> RightAo .AO lnfo.Wings[Oounter2j then
begin

DialogScreen[4]. lnit(Ooncat(LeftAO. ACInfo. Wingslnf o[Oounter2J. 'dlg'));
DialogScreen[51. lnit(Ooncat(RightAO.AO lnfo.Wingslnf o[Counter2], '.cdlg'));
DialogScreen[4].Show(1 0,30);
DialogScreen[5] .Show(430,30);
Ch : - ReadKey;
while Oh =h'do

71

begin
GetHelp;
Ch :- ReadKey;

end;
DialogScreen [5]. Hide;
DialogScreen[4J. Hide;
DialogScreen5J .Kill;
DialogScreen[4). Kill;

end;
for Counter2 :- 1 to 2 do

if (LeftAO.AClnfo.Engine[Counter2l <>" and (Oh <> #27) and
(RightAC.AClInfo. Engine[Counter2) <> ") then

if LettAC.AO Info. Engine[Oounter2j <> RightAO.AClnfo.Engine[Oounter2] then
begin

DialogScreen[4]. lnit(Concat(LeftAC.AC Info. Engine lnfo[Oounter2J,'.Clg'));
DialogScreen[5J.lnit(Ooncat(RightAO.A~lnf o. Enginelnfo[Oounter2J,'.dlg'));
DialogScreen[4J.Show(l 0,30);
DialogScreen[51.Show(430,30);
Oh :=ReadKey;
while Oh - h' do

begin
GetHelp;
Oh :=ReadKey;

end;
DialogScreen [5). Hide;
DialogScreen[4]. Hide;
DialogScreen[5J .Kill;
DialogScreen[4]. Kill;

end;
for Oounter2 1= to 4 do

it (LeftA.AC Info. Fuslag[Oounter2] <> ')and (Oh <> #27) and
(RightAO.AClnfo. Fuslag(Oounter2I <> ") then

if LeffAO. ACInfo. Fuslag[Oounter2] <> RightAO.A~lnfo.FuslagtCounter2J then
begin

DialogScreen[4J. lnit(Ooncat(LeftAO.A~lnf o. Fuslaglnfo[Oounter2],'.dlg'));
DialogScreen[5J. lnit(Ooncat(RightAO.AO Info. FuslagInf o[Oounter2], '.dcog'));
DialogScreen[4).Show(1 0,30);
DialogScreen[5].Show(430,30);
Oh :=ReadKey;
while Oh = 'h' do

begin
GetHelp;
Oh *- ReadKey;

end;
DialogScreen[5]. Hide;
DialogScreen[41 .Hide;
DialogScreen[5J .Kill;
DialogScreen[4J. Kill;

72

end;
for Counter2 :- 1 to 5 do

if (LeftAO.AClnfo.Tail[Oounter2] <> ") and (Ch <> #27) and
(RightAC.AOInfo.Tail[Counter2j <> ") then

if LeftAO.ACInfo.TaiI[Oounter2J <> RightAO.AOInfo.Tal-I[Counter2J then
begin

DialogScreen41. Ini(Concat(LeftAC.AClnfo.Taillnfo[Cotinter2],'.dlg'));
DialogScreen[5). Init(Concat(RightAC .AC lnfo.Taillnf o[Counter2J, '. dig'));
DialogScreen[4].Show(1 0,30);
DialogScreen[5J.Show(430,30);
Oh :- ReadKey;
while Oh = 'h' do

begin
GetHeip;
Oh :- ReadKey;

end;
DialogScreen[5J. Hide;
DialogScreen [4]. Hide;
DialogScreen[5]. Kill;
Dial ogScreen j4]. Kill;

end;
DialogScreen[1].Hide;
DialogScreen[1].Kill;
DialogScreen[2]. Hide;
DialogScreen[2]. Kill;
DialoaScreen[31. Hide;
DialogScreen[3J. Kill;
RightAC.Hide;

end; (HandleCloselntermediate)

procedure Handlerongintermediate;
begin {HandleWrong Intermediate)

DialogScreenj 1]. Init(Ooncat('Wrong', Chr(Random(1 0)+48),' di')
DialogScreen[1 I.Show(220,25);
Oh :=Readkey;
if Ch = 'h' then

GetHelp;
DialogScreenfl 1].Hide;
DialogScreen[1]. Kill;
if Oh = #27 then Exit;
DialogScreenji]. InitC IdWEFT.dlg');
DialogScreenil 1 .Show(220,25);
DialogScreen[2)J lnit(Ooncat(Oopy(StudentModel.AOArray[Counterl 1, 4),'.nam'));
DialogScreen[2J.Show(50,1 79);
Oh :- ReadKey;
while Oh = h' do

begin
GetHeip;

73

Ch :. ReadKey;
end;

DialogScreenfl 1].Hide;
DialogScreenl 1 .Kill;
for Counter2 :- 1 to 4 do

.(LeftAO.AClnfo.Wings[Counter2J <> ") and (Oh <> #27) then
begin

WEFTMenu. lni(Concat(Copy(LeftAC.AClnfo.Wingslnf o[Counter2j, 1,5),' .mnu'));
Choice :- WEFTMenu.GetChoice;
if Choice - LeftAC.AClnfo.Wings[Oounter2J then

begin
DialogScreenf 11. nit(Concat('Correct' ,Chr(Random(1 0)4-48) ,'.cg'));
DialogScreenl].Show(220,25);
Oh : - ReadKey;
while Oh . h' do

begin
GetHelp;
Oh := ReadKey;

end;
DialogScreen[1 J Hide;
DialogScreen[IlJ Kill;

end
else if Choice <> 'null' then

begin
DialogScreenhl J.lnit(Concat('Wrong',Chr(Random(1 0)+48),'.dlg'));
DialogScreen[l J.Show(220,25);
ShowFeature(LeftAC.AClnfo.Wingsnfo[Counter2);
DialogScreen[1].Hide;
DialogScreen[1I. Kill;

end
else Oh :=#27;

end;
for Oounter2 :=1 to 2 do

if (LeftAO.AC Info. Engine[Counter2] <> ") and (Oh <> #27) then
begin

WIEFTMenu. lnit(Ooncat(Oopy(LetAO.AC Info. Engineinfo[Oounter2l, 1,5) ,'. mnu'));
Choice: WEFTMenu.Getohoice;
it Choice = LeffA.AClnfo.Engine[Counter2] then

begin
DialogScreen1 J. nit(Concat(oCorrect' ,Chr(Random(1 O)+48) ,'.dlg'));
DialogScreen[I J.Show(220,25);
Oh :=ReadKey;
while Oh = h' do

begin
GetHelp;
Oh :mReadKey;

end;
DialogScreen(1].Hide;

74

DialogScreen[1).Kill;
end

else if Choice <> 'null' then
begin

DialogScreenil 1.lInit(Concat('Wrong', Chr(Random(1 0)+48),'. dig'));
DialogScreenl1].Show(220,25);
ShowFeature(LeftAC.AClInfo. Enginelnfo(Counter2J);
DialogScreen[1].Hide;
DialogScreen~1. .Kill;

end
else Oh :- #27;

end;
for Counter2 :- 1 to 4 do

if (LeftAC.AC Info. Fuslag[Counter2] <> ") and (Oh <> #27) then
begin

WEFTMenu. lnit(Concat(Copy(LeftAC.AClnf o.Fuslaglnfo[Counter2j,1 ,5),'.mnu'));
Choice :- WEFTMenu.GetChoice;
if Choice = LeftAC.AC Info. Fuslag[Counter2J then

begin
DialogScreenji]. lnit(Concat('Correct', Chr(Random(1 0)+48),' di')
DialogScreen~l I.Show(22O ,25);
Oh :=ReadKey;
while Oh = h' do

begin
GetHelp;
Oh :- ReadKey;

end;
DialogScreenji].Hide;
DialogScreen[1].Kill;

end
else if Choice <> 'null' then

begin
DialogScreenji 1. lnit(Ooncat('Wrong', ,hr(Random(1 0)+48) ,'. dig'));
DialogScreen [1 J.Show(220,25);
ShowFeature(LeftA .AC Inf o. Fuslag lnfo[Oounter2j);
DialogScreen[1].Hide;
DialogScreen[1]. Kill;

end
else Oh :- #27;

end;
for Counter2 := 1 to 5 do

if (LeftAO.AC Info. Tail[Oounter2] <> ") and (Oh <~> #27) then
begin

WEFTMenu. Init(Ooncat(Oopy(LeftAO.AO lnfo.Taillnfo[Counter2j, 1,5),'.mnu'));
Choice :- WEFTMenu.GetChoice;
if Choice = LefIAC.AClnfo.TaiI[Counter2j then

begin
DialogScreenji J lnit(Ooncat('Correct',Ohr(Random(1)+48) ,.cg);

75

DialogScreenrl J.Show(220,25);
Oh :=ReadKey;
while Oh - h' do

begin
GetHelp;
Oh :=ReadKey;

end;
DialogScreen[lv]-Hide;
DialogScreenil].Kill;

end
else it Choice <> null' then

begin
DialogScreenti J. nit(Concat('Wrong' ,Chr(Random(1 O)+48),'.dlg'));
L~dlogScreenll I. Show(220,25);
ShowFeature(LeftAO.AClnfoTailflfo[Counter2J);
DialogScreen[1].Hide;
DialogScreenil].Kill;

end
else Oh :=#27;
end;

DialogScreen[2. .Hide;
DialogScreen[2]. Kill;

end; {HandleWronglIntermediate)

begin (Reviewintermediate)
MaxNum O=150;
Oh := #13;
Done: false;
DialogScreenji].lInit('Retun -dig');
DialogScreen[1 J.Show(220,25);
Oh := ReadKey;
while Oh =W''do

begin
GetHeip;
Oh: ReadKey;

end;
DialogScreen[1].Hide;
DialogScreen[1].Kill;
if Oh =#27 then Exit;
DialogScreen[1). lnt('Revlnt.dlg');
DialogScreen[1 .Show(220,25);
Oh: ReadKey;
while Oh .h' do

begin
GetHelp;
Oh: ReadKey;

end;
DialogScreen~1].Hide;

76

DialogScreen[1 1. Kill;
if Ch - #27 then Exit;
Counteri : StudentModel.GetEntry(MaxNum);
while (Counteri <> 0) and (Done = false) do

begin
LeftAC.lnit(StudentModel.ACArray[Counterl 1);
WEFTMenu . nit('WEFT.mnu');
GorrectAnswer .- false;
CloseAnswer := false;
LeftAC.Show(25,72);
Choice: WEFTMenu.GetChoice;
iN Choice - 'null' then

begin
LeftAC.Hide;
LeftAC. Kill;
Exit;

end;
if Choice = LeftAC. AC Info. AircraftIName then

Handleorrectintermediate
else

begin
if Copy (Choice,4, 1) ='then

RightAC. In it(Concat(Copy (Choice, 1, 3),'-', Copy(StudentModel. ACArray[Counter 1, 5,3)))
else RightAC. Init(Concat(Copy(Choice, 1,4),Copy(StuclentModel.ACArray[Counterl],5,3)));

if CompareAircraft >= 0.7 then
HandleCloseInternediate

else
begin

HandleWrong Intermediate;
if StudentModel.AddEntry(StudentModel.ACArray[Counterl], MaxNum) =false

then
Done :=true;

end;
RightAC.Hide;
RightAC.Kill;

end;
GoToXY(1 ,1);
LeftAC.Hide;
LeOAC.Kill;
if Ch = #27 then Exit;
Counteri : StudentModel.GetEntry(MaxNum);

end;
Done := true;

end; (Reviewintermediate)

procedure ReviewExpert;
var

Feature : array [1.. 161 of name;

77

begin (ReviewExpert)
MaxNum: =150;
Ch :- #13;
Done :=false;
DialogScreen[1 J.lnit('Retum.dlg');
DialogScreeni].Show(220,25);
Oh :- ReadKey;
while Ch -'h' do,

begin
GetHelp;
Oh := ReadKey;

end;
DialogScreen[1].Hide;
DialogScreen [1].Kill;
if Oh = #27 then Exit;
DialogScreenfl1 .lnit('RevExp.dlg');
DialogScreenji J.Show(220,25);
Oh: ReadKey;
while Oh = 'h' do

begin
GetHelp;
Oh := ReadKey;

end;
DialogScreenji].Hide;
DialogScreen [1]. Kill;
if Oh = #27 then Exit;
Countedr: StudentModel.GetEntry(MaxNum);
while (Counterd <> 0) and (Done = false) do

begin
Oounter3 :=1;
LeftAO.lnit(StudentModel.AOArray[Oounterl D
WEFTMenu~lnit('WEFT.mnu');
for Oounter2 :=1 to 4 do

if LeftAO.A~lnfo.Wingslnfo[Counter2I <> "then
begin

FeaturefCounter3j : LettAO .AC Info. WingslInfo[Oounter2j;
Counter3 :=Oounter3 + 1;

end;
for Oounter2 1= to 2 do

if LeftAO.AC Info. Enginelnf o[Oounter2] <> " then
begin

Feature[Oounter3] := LeftAO.A~lnfo.Enginelnfo[Oounter2j;
Oounter3 :- Oounter3 + 1;

end;
for Oounter2 := 1 to 4 do

if LeftAO.AC Info. Fuslaglnf o[Oounter2] <> " then
begin

Feature[Counteraj := LeftAO. ACInfo. FuslaglInf o[Oounter2];

78

Oounter3 :-Counter3 + 1;
end;

for Counter2 :=1 to 5 do
if LeftAC.AClnf o.Tai nfo[Counter2J <> " then

begin
Feature[Counter3j := LeftAC.AC lnfo.Taillnfo[Oounter2];
Counter3 :-Counter3 + 1;

end;
Oounter2 :=1;
Oh := #8;
while Oh <> #1 3 do

begin
ShowFeature(Feature[Counter2l);
if (Oh = '-') and (Oounter2 > 1) then

Oounter2 :=Counter2 - 1
else if (Oh = '-') and (Counter2 - 1) then

Counter2 :=Counter3 - 1
else if (Oh = '..2) and (Counter2 < Counter3 - 1) then

Counter2 :=Counter2 + 1
else if (Oh = '+') and (Counter2 Oounter3 - 1) then

Counter2 := 1
else if Oh = #27 then Exit
else

begin
Sound(440);
Delay(200);
NoSound;

end;
end;

Choice: WEFTMenu.GetChoice;
if Choice = 'null' then

Exit;
DialogScreen[2]. lnit(Concat(Oopy (Student Model.ACArray[Oounterl 1,1 ,4),'.nam'));
LeftAC. Show (25,72);
DialogScreen[21.Show(50,1 79);
if Choice = LeftA C. ACInfo. AircraftName then

begin
DialogScreenf 1]. lnit(Ooncat('Correct', Chr(Random(1 O)+48),'.dlg'));
Dialog Screen[1].Show (220,25);
StudentModel. ACArray[Counteri]
Oh := ReadKey:
while Oh ='h' do

begin
GetHelp;
Oh :=ReadKey;

end;
DialogScreenfi 1JHide;
DialogScreen[1] Kill;

79

end
else

begin
DiatogScreen[1J. lnit(C"oncat(Wrong',Chr(Random(1 O)+48) ,'.dlg'));
DialogScreenhl].Show(220,25);
if Copy (Choice4,1) =then

begin
RightAC. Init(Concat(Copy(Choice,1 ,3),'j,Copy(StudentModel.ACArray[Counterl],5,3)));

DialogScreen[3J.lnit(Concat(Copy(Choice, 1,3),'-','.nani'));
end

else
begin

RightAC. lnit(Concat(Copy (Choice, 1 ,4), Copy(StudentModel.ACArray[Counterl J5,3)));
DialogScreen[3]. Init(Concat(Copy(Ohoice, 1 ,4),'.nam'));

end;
RightAC. Show(365,72);
DialogScreen[31.Show(390, 179);
Oh: ReadKey;
while Ch ='h' do

begin
GetHelp;
Oh :=ReadKey;

end;
DialogScreen[1 1 Hide;
Dial ogScreen[1 J Kill;
DialogScreen[3J. Hide;
DialogScreen[3J. Kill;
RightAC.Hide;
RightAC.Kill;
if StudentModel.AddEntry(StudentModel.ACArray[Counterl], MaxNum) =false then

Done :=true;
end;

GoToXY(1 .1);
DialogScreen[2]. Hide;
DialogScreen[2]. Kill;
LeftAC.Hide;
LeftAC. Kill;
if Oh = #27 then Exit;
Countedi := StudentModel.GetEntry(MaxNum);

end;
Done := true;

end; {ReviewExpert)

procedure Test Intermediate;
begin {Testlntermediate)

Oh :=#13;
Done :=false;
MaxNum := 150;

80

DialogScreenhl]. lnit('Return.dlg');
DialogScreen[1 J.Show(220,25);
Oh :=ReadKey;
while Oh - h' do

begin
GetHelp;
Oh :. ReadKey;

end;
DialogScreen[1J].Hide;
DialogScreen [1].Kill;
if Oh = #27 then Exit;
DialogScreen[1].lnit(VTestlnt dig');
DialogScreen[1 J.Show(220,25);
Oh := ReadKey;
while Oh = 'h' do

begin
GetHelp;
Ch: ReadKey;

end;
DialogScreen~1]-Hide;
DialogScreen[1).Kill;
it Oh = #27 then Exit;
Counterl :. StudentModel.GetEntry(MaxNum);
while Counteri <> 0 do

begin
if StudentModel.AOArray[Oounterll <> ' then

begin
LeftAC. lnt(StudentModel.ACArray[Couflterl 1);
LeftAC.Show(25, 72);
WE FTMenu. lnit('WEFT.mnu');
Choice: WEFTMenu.GetChoice;
if Choice = 'null' then

begin
LeftAC.Hide;
LeftAC.Kill;
Exit;

end;
if Choice <> LeftAC.AClnfo.AircraftNamle then

begin
lnc(StudentModel. NumMissed);
Sound(1 00);
Delay(200);
NoSound;

end;
lnc(StudentModel. NumnShown);
LeftAC. Hide;
LeftAC.Kill;

end;

81

GoToXY(1 ,1);
StudentModel.ACArray[CounterlJ .

Counteri :- StudentModel.GetEntry(MaxNum);
end;

Done :- true;
end; {Testlntermediate)

procedure TestExpert;
var

Feature :array [1. .161 of name;
begin (TestExpert)

MaxNum :- 150;
Oh . #13;
Done :- false;
DialogScreenji 1. lnit('Return.dlg');
DialogScreen[1].Show(220,25);
Oh :- ReadKey;
while Oh = 'h' do

begin
GetHelp;
Oh := ReadKey;

end;
DialogScreen[1 I. Hide;
DialogScreen[1 1. Kill;
if Oh = #27 then Exit;
DialogScreen[1 1. Init('TestExp.dlg');
DialogScreenf 1].Show(220,25);
Oh := ReadKey;
while Ch = 'h' do

begin
GetHelp;
Oh: ReadKey;

end;
DialogScreen[1].Hide;
DialogScreen[1].Kill;
if Oh = #27 then Exit;
Oounterl :=StudentModel.GetEntry(MaxNum);
while Oounterl <> 0 do

begin
if StudentModel.AOArray[Oounterl J<> " then

begin
LeftAO. lnt(StudentModel.AOArray[Counterl1)
WEFTMenu. nit('WEFT.mnu');
Oounter3 :- 1;
for Counter2 :- 1 to 4 do

if LeftAO.AC Info. Wingslnfo[Oounter2J <> "then
begin

Feature[Counter3J :- LeftAO.A~lnfo.Wingslnfo[Counter2;

82

Counter3 :- Counter3 + 1;
end;

for Counter2 :- 1 to 2 do
if LeftAC.ACInfo.Enginelnfo[Counter2I <> " then

begin
Feature(Counter3j :. LeftAC.AC Info. Enginelnfo[Counter2J;
Counter3 :=Counter3 + 1;

end;
for Counter2 := 1 to 4 do

if LeftAC.AClInto. Fuslaglnfo[Counter2J <> " then
begin

Feature[Counter3] := LeftAC.ACInf.Ft'sleglnfo[Counter2;
Counter3 :- Counter3 + 1;

end;
for Counter2 :- 1 to 5 do

if LeftAC.AClnfo.Taillnfo[Oounter2] <> " then
begin

Feature[Counter3J : LeftAC.AC lnf o.Tail lnfo[Counter2J;
Counter3 :=Counter3 + 1;

end;
Counter2 :=1;
Ch :=#8;
while Ch <> #13 do

begin
ShowFeature(Feature[Counter2);
if (Ch ='-') and (Counter2 > 1) then

Counter2 Counter2 - 1
else if (Ch .'-') and (Counter2 - 1) then

Counter2 :=Counter3 - 1
else if (Oh = '+') and (Counter2 < Counter3 - 1) then

Counter2 :=Counter2 + 1
else if (Oh = '+') and (Counter2 =Counter3 - 1) then

Counter2 :- 1
else if Oh = #27 then Exit
else

begin
Sound(440);
Delay(200);
NoSound;

end;
end;

Choice :- WEFTMenu.GetChoice;
it Choice = 'null' then

Exit;
LeftAC.Show(25,72);
if Choice <> LeftAC.AClnfo.AircraftName then

begin
Inc(StudentModel. Numissed);

83

Sound(1 00);
Delay(200);
NoSound;

end;
Inr(StudentModel. NumShown);
Ch :. ReadKey;
while Oh - h' do

begin
GetHeip;
Oh :- ReadKey;

end;
LeftAC.Hide;
LeftAC. Kill;
iN Oh - #27 then Exit;
GoToXY(1 ,1);
StudentModel.ACArray[Counterl :="
Counteri := StudentModel.GetEntry(MaxNum);

end;
end;

Done :- true;
end; {TestExpert)

procedure EvaluateStudent;
var F :text;
begin {EvaluateStudent)

if (StudentModel. Mode = Teach') and (StudentModel.NumShown >- MaxNum) then
begin

StudentModel. Update(StudentModel.StudentName,'Review',
StudentModel. Level, StudentModel.TestScore);

DialogScreenji 1. nt('Advancel .dlg');
DialogScreen!1].Show(220,25);
Oh :=ReadKey;
DialogScreen[i 1. Hide;
DialogScreen[1 J]NiO;

end
else if (Studentodel.Mode . 'Review') and (Done - true) then

begin
it StudentModel.GetEntry(MaxNum + 150) - 0 then

begin
if Studentodel. Level = 'Novice' then

begin
StudentModel. Update(StudentModel.StudentName,'Teach' ,'Intermediate',

StudentModel. TestScore);
DialogScreenfI) .lnit('Advance2.dlg');
DialogScreenf 1 .Show(220,25);
Oh :- ReadKey;
DialogScreen[1].Hide;
DialogScreen[1]. Kill;

84

end
else

begin
StudentModel. Update (StudentModel. StudentName, Test',

StudentModel. Level, StudentModel.TestScore);
DialogScreen1 IJ. Init(Advance 1. dicg');
DialogScreen! 1 .S9how(220,25);
Ch :- ReadKey;
DialogScreen(1].Hide;
DialogScreen[1]. KiI1;

end
end

else
for Countedr: 1 to MaxNum do

begin
StudentModel.ACArray[Counterl] := StudentModel.MissedArray[Counterl J;
StudentModel.MissedArray[Counterl J:="
StudentModel.NumShownw 1;
Studentodel.NumMissed :=0;

end
end

else if (Studentodel.Mode . 'Test') and (Done =true) then
begin

if StudentModel.NumMissed - 0 then
begin

if StudentModel. Level = 'Expert' then
begin

Assign(F,'HallFanexrec');
Append(f);
Writeln(F,StudentModel.StudentName);
Close(F);
StudentModel. Kill

end
else

begin
DialogScreen [1).lnit('Great.dlg');
DialogScreen[1 I.Show(220,25);
StudentModel. Update(StudentModel.StudentName, 'Review', 'Expert', 100);
Oh :. ReadKey;
DialogScreel[1].Hide;
DialogScreen[1].Kill;

end
end

else
begin
Score :- Round(100*(1 - (StudentMode'. NumMissedl(StudentModel.NumShown-1))));

DialogScreenf 1J. nit('Score.dlg');
DialogScreenji 1J.Show (220,25);

85

Set~olor(1);
QutTextXY(31 5,60,Chr(Score div 10 + 48));
OutTextXY(325,60,Chr(Score mod 10 + 48));
Set~olor(0);
Oh :- ReadKey;
DialogScreenhl].Hide;
DialogScreen[1].Kill;
if Score >= 90 then

begin
if Studentodel.Level - Expert' then

begin
DialogScreen[1. Jlnit('Outst.dlg');
DialogScreen[1 i.Show(220,25);
StudentModel. Update(StudentModel.StudentName,'Test','Expert',Score);
Oh :. ReadKey;
DialogScreenji I. Hide;
Dialog Screenji]. Kill;

end
else

begin
DialogScreen! 1. .lnit(Good.dlg');
DialogScreen [1 I.Show(220,25);
Oh :=ReadKey;
DialogScreen(1].Hide;
Dialog Screen[1].Kill;
if Studentodel.Level = Novice' then

StudentModel. Update (StudentModel .StudentName,'Teach',
Intermediate', Score)

else
StudentModel. Update(StudentModel.StudentName,'Review',

'Expert', Score);
end

end
else Rf Score >- 80 then

begin
DialogScreenji). Init(CFair.dlg');
DialogScreenil I.Show(220,25);
Oh := ReadKey;
DialogScreen [1]Hide;
DialogScreenji J. Kill;

StudentModel .Update(StudentModel.StudentName, Test',StudentModel. LevelScore);
end

else if Score >- 70 then
begin

DialogScreen[I1. Init('Poor.dlg');
DialogScreenil J.Show(220,25);
Oh :- ReadKey;
DialogScreenjl 1. Hide;

86

DialogScreen[1].Kill;
SkWoe.paeSuetoe.kW4tRvWSietoe.eeor)
end

else
begin

DialogScreen1 1. lnit(ffail.dlg');
DialogScreen[I 11.Show(220,25);
Oh :. ReadKey;
DialogScreen[l]. Hide;
DialogScreeni 11. Kill;
Rf Studentodel.Level 'Expert' then

StudentModel. Update(StudentModel.StudentName,
'Review', 'lntefnieciate',Scors)

else
StudentModel. Update(StudentModel.StudentName,

'Review','Novice', Score);
end;

end;
end;

end; (EvaluateStudent)

procedure TutorSession;,
begin (TutorSession)

if not Student Model. Get then
Diagnose;

Ch :'0';
while UpCase(Ch) = 'C' do

begin
SetColor(1);
OutTextXY(32O, i 90,Concat(StudentModel. Mode,'', StudentModel. Level));
SetColor(O);
if StudentModel. Level = 'Novice' then

begin
if StudentModel.Modto = Teach' then Teach
else if Studentodel.Mode = 'Review' then ReviewNovice;

end
else if StudentModel. Level = 'Intermediate' then

begin
if StudentModel. Mode = 'Teach' then Teach
else if StudentModel. Mode = 'Review' then Review Intermediate
else if Studentodel.Mode -'Test' then Testintermediate;

end
else if Studentodel.Level = 'Expert' then

begin
if Studentodel.Mode - 'Review' then ReviewExpert
else iR Studentodel. Mode - 'Test' then TestExpert;

end;
SetColor(O);

87

OutTextXY(320, 190,Concat(StudentModel. Mode,'/',StudentMcodel.Level));
EvaluateStudent;
DialogScreen[l j.lnft('Contin.dlg');
DialogScreen[l J.Show(220,75);
Ch :. ReadKey;
DialogScreen(1).Hide;
DialogScreenhl].Kill;

end;
StudentModel. Save;

end; (TutorSession)

end.

88

unit Game;

interface
procedure PlayGame;

implementation

uses CRT, Graph, Student, Aircfts, Dialogs, Menus, Help;

type
name = string[201;

var
Counterd, Counter2, Counter3, MaxTime, MaxNum, PUi Score, PL2Score :integer;
Score string;
Oh, P1: char;
LeftAC, RightAC : Aircraft;
DialogScreen : array [1. .2] of Dialog;
WEFTMenu: Menu;
Choice : name;,

procedure ShowScores;
begin

SetColor(O);
Line(260,62,280,62);
Line(260,65,280,C-5);
Line(260,68,280,68);
SetColor);
Str(PL1 Score, Score);
OutTe xtXY (270,65 , Score);
SetColor(0);
Line(360,62,380,62);
Line(360,65,380,65);
Line(360,68,380,68);
SetColor(1);
Str(P L2Score, Score);
OutTextXY(370,65, Score);
SetColor(O);

end;

procedure PlayOne;
begin

DialogScreen[2].Init(QNoGame.dlg');
DialogScreen[2]. Show (220, 100);
SetColor(1);
OutTextXY(31 9,142, LeftAC.AC lnfo.AircraftName);
SetColor(0);
Ch :. ReadKey;

89

while Oh . h' do
begin

GetHelp;
Oh: ReadKey;

end;
DialogScreen[2]. Hide;
DialogScreen[2]. Kill;
LeftAC.Hide;
RightAC.Hide;
LeftAC.Kill;
RightAO.Kill;
PL2Score :. PL2Score + 1;
ShowScores;
DialogScreen[2] lnt(Ready.dlg');
DialogScreen[2].Show(220,95);
Oh :=ReadKey;
while Oh = 'h' do

begin
GetHelp;
Ch := ReadKey;

end;
DialogScreen[2. .Hide;
DialogScreen [2]. Kill;

end;

procedure PlayTwo;
begin

DialogScreen[1]. lnt('GScore.dig');
DialogScreen[1 j.Show(220,25);
ShowScores;
DialogScreen[21. lnit('Ready.dlg');
DialogScreen[2] .Show(220,95);
Ch -.= ReadKey;
while Oh = 'h' do

begin
GetHelp;
Oh := ReadKey;

end;
DialogScreen[2]. Hide;
DialogScreen (2]. Kill;
for Counteri : 1 to 25 do

begin
Oounter3 :- 0;
Oounter2 :- StudentModel.GetEntry(MaxNum);
LeftAC. Init(StudentModel.AOArray[Oounteir2]);
RightAC. lnit(StudentModel.AOArray[Oounter2j);
LeftAC .Show(25,72);
RightAO.Show(365,72);

90

while (UpCase(Ch) <> 'A') and (UpCase(Oh) <> 'L') and (Oh <> #8) do
begin

Counter3 :. Counter3 + 1;
if Counter3 > MaxTime then

Oh :. #8;
Delay (5)
if KeyPressed then

Oh :- ReadKey;
end;

P1 :- UpCase(Oh);
if PI = #8 then

begin
if MaxTime <> 1000 then

PlayOne
else

begin
LeftAC. Hide;
RightAC.Hide;
LeftAC.Kill;
RightAC.Kill;
DialogScreen[2]linit('TimeOut.dflg');
Dialog Screen[2J.Show(220,9 5);
Oh :=ReadKey;
while Oh - h' do

begin
GetHelp;
Oh :. ReadKey;

end;
Dialog Screen[2J. Hide;
DialogScreen 121. Kill;

end
end

else
begin

RightAC.Hide;
Rig htAO. Kill;
if PI ='A' then

DialogScreen[2]. lnit('Playl .dlg')
else DialogScreen[2J. lnit('Play2.dlg');
DialogScreen[2J.Show(220,25);
WEFTMenu. Init('WEFT.mnu');
Choice :. WEFTMenu.GetChoice;
DialogScreen[2J. Hide;
LeftAC.Hide;
DialogScreen[2]. Kill;
LeftAC.Kill;
if Choice <> LeftAO.AClnfo.AircraftName then

begin

91

Sound(100);
Delay(200);
it PI - 'A' then Dec(PL1 Score)
else Dec(PL2Score);
NoS& nd;

end
else

begin
if PI = 'A' then lnc(PL1 Score)
else lnc(Pl2Score);

end;
ShowScores;
if Counteri < 25 then

begin
DialogScreen[2].lnit('Ready.cdlg');
DialogScreen[2J.Show(220,9 5);
Ch := ReadKey;
while Ch = 'h' do

begin
GetHelp;

Oh :=ReadKey;
end;
Dialog Screen [2]. Hide;
DialogScreen[2J. Kill;

end;
end;

GoToXY(1 ,1);
Oh :=#13;

end;
if PLi Score > PL2Score then

DialogScreen[2J. Init('Winl .dlg')
else if PL2Score > PLi Score then

D-,alogScreen[2J. lnft('VWin2.dlg')
else DialogScreen[2j. lnit('Tie.dlg');
Dialog Screen[2].Show(220,95);
Oh: ReadKey;
DialogScreen[2. .Hide;
DialogScreen [2]. Kill;
DialogScreenji 1. Hide;
DialogScreen[1. JKill;

end;

procedure PlayGame;
begin

StudentModel.Update(' ','Game','Game',O);
MaxNum := 150;
DialogScreen[l]. lnt('Game.dlg');
DialogScreenji J.Show(220,75);

92

Ch :. ReadKey;
while (Ch <>T'1) and (Ch <>'2') and (Ch <> #27) do

begin
if Oh ='h' then

GetHelp;
Oh :- ReadKey;

end;
DialogScreen!l 1].Hide;
DialogScreen il].Kill;
PL Score =0;
PL2Score 0;
iN Oh - #27 then Exit
else if Oh 1'T then

begin
Randomize;
MaxTime :- Random(250) + 250;
PlayTwo;

end
else if Oh =2' then

begin
MaxTime 1000;
PlayTwo;

end;
end;

end.

93

unit Help;

interface

uses CRT, Graph, Screens, Student;

type
HELPScreen - object(Screen)

OfdP :pointer;
procedure Show(XLoc, YLoc integer);
procedure Hide;

end;

procedure GetHelp;

implementation

var
Helpftem: HelpScreen;
Ch :char;

procedure GetHelp;
begin

if Studentodel.Mode = then
Help tem. lnit('Menu. hip')

else if Studentodel. Mode = 'Game' then
Helphtem. lnit('Game. hip')

else if StudentModel. Mode = 'Setup' then
Help Item. Inhf('Setup. hip')

else iH Studentodel.Mode = 'StuRep' then
Help Item. lnit('StuRep. hlp')

else if Studentodel.Mode = 'DelStu' then
Help Item. lnft('DelStu. hip')

else if Studentodel.Mode = 'SeIAC' then
Help tem. lnft('SeIAC. hip')

else if Studentodel.Mode = 'AddAC' then
HelpiRem. lnit('AddAC. hlp')

else if Studentodel.Mode = 'Diagnose' then
Helpitem. Init('Diagnose. hip')

else if StudentModel. Mode = 'Teach' then
begin

if Studentodel.Level = 'Novice' then
Helpitem. Inft('TeaNov.hlp')

else HelplItem. Init('Tealnt. hip');
end

else if StudentModel. Mode - 'Test' then
begin

if StudentModel. Level . 'Intermediate' then

94

Help Item. lit(Testlnt. hip')
else Help Rem. Init(TestExp. hlp')

end
else

begin
if StudentModel. Level ='Novice' then

Helpitem. lnft('RevNov.hlp')
else iN StudentModel. Level ='Intermediate' then

Helpitem. lnit('Revlnt.hlp')
else Helpltem.Init('RevExp.hlp');

end;
Helpltem.Show(O,O);
Oh := ReadKey;
Help hem. Hide;
Helpltem.Kill;

end;

procedure HELPScreen.Show(XLoc, YLoc: integer);
begin

iR not lsVisible then
begin

X :=XLoc;
Y: YLoc;
GetMem(OldP, MemSize);{Save the old bitmap)
Getlmage(X,Y,X+639,Y+1 99,O1dPA);
Putimage(X, Y, PA CopyPut); (and draw the new bitmap.)
lsVisible := true;

end;
end;

procedure HELPScreen. Hide;
begin

if lsVisible then
begin

Putllmage(X, Y,OIdP A, Copy Put);{(Put the old bitmap back)
FreeMem(OldP, MemSize);{and free the heap memory.)
lsVisible := false;

end;
end;

end.

95

unit Utility;

interface
procedure SetUp;

implementation

uses
DOS, CRT,Graph, PCXTP,Student, Menus, Screens,Aircfts, Dialogs, Help;

type
name = string[201;

var
retcode :integer;
F :text;
TextString :string;
Counter :integer;
SetUpMenu: Menu;
DialogScreen Dialog;
StudentMenu Menu;
ACMenu: Menu;
StudentReport :Screen;
Choice: name;
Ch :char;

procedure GetStudents;
var

DirInfo: SearchRec;
begin

Assign (F, 'Student. rec');
ReWrite(F);
Writeln(F,'STUDENTS');
Writeln(F,320);
Writeln(F,50);
Writeln(F, 1);
FindFirst(".mdl',AnyFile, DirInfo);
while DosError -0 do

begin
Writeln(F,Copy(Dirlnfo. Name, 1,5));
FindNext(Dir into);

end;
Close(F);

end;

procedure SelectAC;
var

ACArray :array [1.. 150] of name;

96

Dirinfo :SearchRec;
F1,F2 :text;
Counteri integer;
ACName name;

begin
Studentodel.Mode :. 'SeIAC';
Counter :. 1;
FRndFirst('.nam',AnyFile, Dirinfo);
while DosError = 0 do

begin
Assign(FI, Concat(Copy(Dirlnfo. Name, 1,4),'#1.a')
Reset(Fl);
Readln(F1 ACName);
ACArrayf Counter] :. ACName;
Counter :. Counter + 1;
Close(F1);
FindNext(Dirlnfo);

end;
Assign(F,'Aircraft. rec');
ReWrite(F);
Writeln(F,'AIRCRAFT');
Writeln(F, 320);
Writeln(F.50):
Writeln(F, 1);
for Counteri := 1 to Counter-i do

if ACArray[Counterl J <> " then
Writeln(F,ACArray[Counterl 1);

Close(F);
Assign(F,'lntermed.def');
Assign(F1 ,'WEFT .mnu');
Rewrite(F);
Rewrite(f1);
Writeln(F,'lntermed default');
Writeln(F,'Teach');
Writeln(F.'lntermediate');
Writeln(F,Q);
Writeln(F,l);
Writeln(F,0);
Writeiln,'AIRCRAFT);
Writeln(F1 .490);
Writeln(F1 ,76);
Writeln(F1 ,0);
DialogScreen. lnit('SeIAC.dlg');
DialogScreen. Show(0 .0);
ACMenu. Ini('Aircraft.rec');
Choice :. ACMenu.GetChoice;
while Choice <> 'null' do

begin

97

if Copy(Choice,4,1) -,then

begin
Writein(F,Concat(Copy(ChoiceI ,3),'-#1'));
Writeln(F,Concat(Copy(Choice,1 ,3),'-#2'));
Writeln(F,Concat(Copy(Choice 1 ,3),'_#3'));

end
else

begin
Writeln(F,Concat(Copy(Choice, 1,4),'_#1'));
Writein(F,Concat(Copy(Choice,) #')
Writeln(F,Concat(Copy(Choice,1 ,4),'_#3'));

end;
Writeln(f1 ,Choice);
for Counteri : I to Counter-i do

if ACArray[Counteri] - Choice then
ACArray[CounterlJ] *

Assign(F2,'Aircraft.rec');
ReWrite(F2);
Writeln (F2, 'AIRC RAFT');
Write ln(F2,320);
Writeln(F2, 50);
Writeln(F2, 1);
for Counteri : 1 to Counter-i do

if ACArray[CounterlJ <> '' then
Writeln(F2,ACArray(Counterl1)

Close(F2);
ACMenu. lnt('Aircraft.rec');
Choice: ACMenu.GetChoice;

end;
DialogScreen.Hide;
Dialog Screen. Kill;
Close(F);
Close(F1);

end;

procedure AddAC;
const

ALPHA = '' ''''.Za..z,-J
var

ACName name;
Dirlnfo :SearchRec;
Counteri ,Counter2 :integer;
Size :word;
P pointer;
s string;
FileName :string;
F :file;

98

F1 :text;
Oh :char;
Offset,MaxX,MaxY,X,Y: integer;
QldAC :aircraft;

begin
StudentModel. Mode: 'AddAO';
AOName :. ";

Counteri :-1;
SetColorl);
DialogScreen. lnt('GetAC.dlg');
DialogScreen.Show(220,25);
Line(220,64,420,64);
Line(220,67,420,67);
Line(220,70,420,70);
Oh := #8;
while (Oh <> #13) and (Counteri < 21) do

begin
Oh: ReadKey;
if Oh = chr(32) then

begin
AOName := oncat(ACName,chr(32));
Counteri Oounterl + 1;

end;
if Oh in ALPHA then

begin
SetColor);
OutTextXY(225+1 0*Oounterl ,68,Oh);
AOName := Ooncat(AOName,Oh);
Counteri := Counteri + 1;
Set~olor(1);

end;
if (Oh = #8) and (Oounterl > 1) then

begin
Set~olor(1);
Line(21 0+1 O*Counterl ,64,220+1 OCounteri .64);
Line(2 10+1 O*Oounterl .67,220+1 OCounteri .67);
Line(21 0+1 0*Oounterl .70,220+1 0OCounterl .70);
Oounterl := Counteri - 1;
AOName: Copy (ACOName, 1, ,ounterl -1);
Set~olor(0);

end;
end;

DialogScreen. Hide;
Dialog Screen. Kill;
DialogScreen. lnit('New. dig');
DialogScreen.Show(0, 179);
SetTextJustify(OenterText,OenterText);
OutTextXY(1 00,1 89,AOName);

99

if Copy(ACName,4,1) = ''then
FindFirst(Ooncat(Copy(ACName,1 ,3),'_.nam'),AnyFile, DirInfo)

else FindFirst(Concat(Copy(ACName,1 ,4),'.nam'),AnyFile, Dirlnfo);
Size :. ImageSize(0,179,200,1 99);
GetMem(P ,Size);
Getlmage(0,1 79,200,1 99,PA);
if Copy(ACName,4,1) '' then

Assign(F,Concat(Copy(ACName,1 ,3),'...nam'))
else Assign(F,Ooncat(Copy(ACName, 1,4),'.nam'));
ReWrite(F,1);
Block Write(F, PA ,Size);
Close(F);
FreeMem(P,Size);
DialogScreen. Hide;
DialogScreen. Kill;
Offset :=140;
MaxX :=499;
MaxY := 219;
for Counteri : 1 to 3 do

begin
X= 0;
Y: -0;
str(Counterl ,s);
SetColor(1);
SetineStyle (SolidLn ., Norm Width);
Set Write Mode (XorPut);
if DosError - 0 then

begin
if Copy(ACName,4,I) = then OldAC.lnit(Concat(Copy(ACName,1 ,3),'#'--,s))
else OidAC.lnit(Concat(Copy(ACName, 1,4),'#' ,s));
OldAC.Show(0,O);
for X :.MaxX downto 0 do

for Y : - MaxY downto 0 do
if GetPixel(X,Y) = 1 then

begin
PutPixel(XY,0);
PutPixel(X*2+1 40,Y*2-1 0,1);
PutPixel(X*2+141 ,Y*2-10,1);
PutPixel(X*2+1 40, Y*2+1 -10, 1);
PutPixel(X*2.14 41, ,Y2+1 -10, 1);

end;
OldAC.Kill;

end;
Ellipse(MaxX div 2 + Offset,MaxY div 2-10,0,360,MaxX div 2,MaxY div 2);
repeat

Line(X+Offset,Y,X+Offset,Y+1);
Line(X+Offset,Y,X+Offset.-1,Y);
Oh := ReadKey;

100

while Ch . h' do
begin

GetHelp;
Oh :- ReadKey;

end;
Line (X+Offset, Y, X+Offset,Y+ 1);
Line (X+Oftset, Y, X+Offset+1, ,Y);
Case Oh of

chr(80), chr(50) iR Y < MaxY then Y :. Y + 2;
chr(75), chr(52) if X > 0 then X :. X -2;
chr(77), chr(54) N1 X < MaxX then X :. X + 2;
chr(72), chr(56) if Y > 0 then Y :. Y - 2;
chr(32) :begin

PutPixel(X+Offset,Y,abs(GetPixe(X+Offset,Y)- 1));
PutPixel(X+Off set+ 1 ,Y,abs(GetPixe(X+Offset+1 ,Y)- 1));
PutPixel(X+Offset,Y+1 ,abs(GetPixel(X+Offset+1 ,Y+1)- 1));
PutPixel(X+Ofseti-1,Y+1 ,abs(GetPixel(X+Offset+1 ,Y+1)-1));

end;
end;

until Oh = #13;
SetColor(0);
Ellipse(MaxX div 2 + Otfset,MaxY div 2-10,0,360,MaxX div 2,MaxY div 2);
for X := 0 to MaxX div 2 do

for Y := 0 to MaxY div 2 - 10 do
if GetPixel(X*2+Offset,Y*2) - 1 then

begin
PutPixel(X, Y+5,1);
PutPixel(X*2+Offset,Y*2,0);
PutPixe(X*2+Offset+1 ,Y2,0);
PutPixel(X*2+Qffset,Y*2+1,Q);
PutPixel(X*2+Offset+1 ,Y*2+1 .0);

end;
retcode :=pcxSetDisplay(pcxCGA 6);
if Copy(AOName,4,1) = '' then
retcode := pcxDisplayFile(Concat(Copy(ACName ,1 .3),'__#Y,s, '.pcx'),0,0, MaxX div 2,MaxY

div 2,0)
else retcode: pcxDisplayFile(Concat(Copy(ACName,1 ,4),'_#',s'.pcx'),0,0,MaxX div 2,MaxY

div 2,0);
(Input the data for this view)
if Copy(ACName,4,1) = '' then

Assign (Fl, Concat(Copy(AC Name,1, .3),'__#',s,'.dat'))
else Assign(F1 ,Concat(Copy(ACName,1 ,4),'_#',s,'.dat'));
ReWrite(F1);
Writeln(F1 ,AC Name);
Writeln(F1 ,");
Writeln(F1 ,");
SetColor(1);
SetLineStyle(SolidLn,0,ThickWidth);

101

for Counter2 :=1 to 40 do
Line(390,Counter2'3+65,590,Counter2*3+65);

SetUpMenu. lnit('Wingl .mnu');
Choice :- SetUpMenu.GetChoice;
if Choice <> 'null then

begin
Writeln (Fl, Choice);
Str(LastSelection,s);
if LastSelection < 10 then

Writeln(F1 ,Concat('Wingl 0',s))
else Writeln(F1 ,Concat('Wingl',s));

end
else

begin
Writeln(f1,");
Writeln(f1,");

end;
SetUpMenu. lnit('Wing2.rnnu');
Choice: SetUp Menu. GetChoice;
if Choic,; <>'null' then

begin
Writeln (Fl, ,Choice);
Str(LastSelection,s);
if LastSelection < 10 then

Writeln(F1 ,Concat('Wing20',s))
else Writeln(F1 ,Concat('Wing2',s));

end
else

begin
Writel1,");
Writeln(F1 ,");

end;
SetUpMenu. lnit('Wing3.mnu');
Choice: SetUpMenu.GetChoice;
if Choice <> 'null' then

begin
Writeln (Fl, Choice);
Str(LastSelection, s);
if LastSelection <c 10 then

Writein (Fl ,Concat('Wing3O' ,s))
else Writeln(F1 ,Concat('Wing3',s));

end
else

begin
Writeln(F1 ,");
Writeln(F1 ,");

end;
SetUpMenu. lnft('Wing4.mnu');

102

Choice :- SetUpMenu.GetChoice;
if Choice <> null' then

begin
Writeln (F, ,Choice);
Str(LastSelection,s);
if LastSelection < 10 then

Writeln(F1 ,Concat('Wing4O',s))
else Writeln(F1 ,Concat('Wing4',s));

end
else

begin
Writeiln,");
Writeln(f1,");

end;
SetUpMenu.Init('Engil .mnu');
Choice: SetUpMenu.GetChoice;
if Choice <>'null' then

begin
Writeln (Fl, Choice);
Str(LastSelection,s);
if LastSelection < 10 then

Writeln(F1 ,Concat('EngilO',s))
else Writeln(F1 ,Concat('Engil ',s));

end
else

begin
Writeln(F1 ,");
Writeln(F1 ,");

end;
SetUpMenu~lnit('Engi2.mnu');
Choice :=SetUpMenu.GetChoice;
if Choice <> 'null' then

begin
Writeln (Fl, Choice);
Str(LastSelection,s);
if LastSelection < 10 then

Writeln(F1 ,Concat('Engi20',s))
else Writeln(F1 ,Concat('Engi2',s));

end
else

begin
Writeln(F1 ,");
Writeln(F1 ,");

end;
SetUpMenu~lnit('Fusel .mnu');
Choice: SetUp Menu. GetChoice;
it Choice <> 'null' then

begin

103

Writeln (Fl, Choice);
Str(LastSelection,s);
if LastSelection < 10 then

Writeln(F1 ,Concat('Fusel O',s))
else Writeln(F1 ,Concat('Fusel',s));

end
else

begin
Writeiln,");
Writeln(F1 ,");

end;
SetUpMenu. lnit('Fuse2.mnu');
Choice: SetUp Menu. GetChoice;
Hf Choice <> 'null' then

begin
Writeln (Fl, Choice);
Str(LastSelection,s);
if LastSelection < 10 then

Writeln(F1 ,Concat('Fuse20'.s))
else Writeln(F1 ,Concat('Fuse2',s));

end
else

begin
Writeln(F1,");
Writeiln,");

end;
SetUpMenu. lnit('Fuse3.mnu');
Choice: SetUpMenu.GetChoice;
if Choice <> 'null' then

begin
Write In (Fl, Choice);
Str(LastSelection,s);
Hf LastSelection < 10 then

Writeln (Fl ,Concat('Fuse3O',s))
else Writeln(F1 ,Concat('Fuse3',s));

end
else

begin
Writeiln,");
Writeln(F1 ,");

end;
SetUpMenu. nit('Fuse4.mnu');
Choice: SetUpMenu.GetChoice;
if Choice <> 'null' then

begin
Writeln(F, ,Choice);
Str(LastSelection,s);
if LastSelection < 10 then

104

Writeln(F1 ,Concat('Fuse4O',s))
else Writeln(F1 ,Concat('Fuse4',s));

end
else

begin
Writeinln(,");
Writeiln,");

end;
SetUpMenu.lntC'TaitlI.mnu');
Choice := SetUpMenu.GetChoice;
iW Choice <>'nuI' then

begin
Writeln (Fl, COhoice);
Str(LastSelection,s);
if LastSellection < 10 then

Writeln (Fl, Concat('Tail 1O', s))
else Writeln(F1 ,Concat('Taill ',s));

end
else

begin
Writeln(F1 ,");
Writeiln,");

end;
SetUpMenu. Init('Tail2.mnu');
Choice: SetUpMenu.GetChoice;
if Choice <> 'null' then

begin
Writeln (Fl, Choice);
Str(LastSelection,s);
if LastSelection < 10 then

Writeln(F1 ,Concat('Tail2O',s))
else Writeln(F1 ,Concat('TaiI2',s));

end
else

begin
Writeln(F1 ,");
Writeiln,");

end;
SetUpMenu. Init('TaiI3.mnu');
Choice: SetUp Menu. GetC hoice;
if Choice <> 'null' then

begin
WrIteln(F, ,Choice);
Str(LastSetection,s);
if LastSelection < 10 then

Writeln(F1 ,Concat('Tail3O',s))
else Writeln(Fl ,Concat('Tail3',s));

end

105

else
begin

Writeln(F1 ,");
Writel1,");

end;
SetUpMenu. lnit('Tail4.mnu');
Choice := SetUpMenu.GetChoice;
if Choice <> 'null' then

begin
Writeln(F, ,Choice);
Str(LastSelection~s);
if LastSelection < 10 then

Writeln(Fl ,Concat('Tail4O',s))
else Writeln(F1 ,Concat('Tail4',s));

end
else

begin
Writeln(f1,");
Writeiln,");

end;
SetUpMenu. lnft('Tail5.mnu');
Choice :. SetUpMenu.Getohoice;
if Choice <> 'null' then

begin
Writeln (F, ,Choice);
Str(LastSelection,s);
Hf LastSelection < 10 then

Writeln(F1 ,Concat('Tail5O',s))
else Writeln(F1 ,Concat('Tail5',Se));

end
else

begin
Writeln(F1 ,");
Writeln(F1 ,");

end;
Close(F1);
ClearDevice;

end;
end;

procedure Report;
begin

Studentodel.Mode :='StuRep';
GetStudents;
DialogScreen. lnit('StuRep.dlg');
DialogScreen. Show(0 ,0);
StudentMenu. lnit('Student.rec');
Choice: Studentenu.GetChoice;

106

while Choice <>'null' do
begin

StudentReport. lnit(StuRep.scr');
StudentRepor.Show(O,O);
Assign(F,Concat(Choice,'.mdl'));
Reset(F);
SetColorl);
SetTextJustify (LeftText, LeftText);
OutTextXY(325,74,Choice);
for Counter :. 1 to 4 do

begin
Readln(F,TextString);
if TextString = '0' then OutTextXY(325, Counterl 2+74,'Not Tested')
else QutTextXY(325, Counter* 1 2+74,TextString);

end;
SetColor(0);
Close(F);
Oh= ReadKey;
while Oh = 'h' do

begin
GetHelp;
Oh := ReadKey;

end;
ClearDevice;
DialogScreen. Hide;
StudentReport. Kill;
DialogScreen. Show(0, 0);
GetStudents;
StudentMenu. lnit(Student. rec');
Choice := StudentMenu.GetChoice;

end;
DialogScreen. Hide;
Dialog Screen. Kill;

end;

procedure DelStudent;
begin

StudentModel. Mode := 'DelStu';
GetStudents;
DialogScreen. lnit('StuDeLdlg');
DialogScreen. Show (0 ,0);

StudentMenu. lnit(Student. rec');
Choice :. StudentMenu.GetChoice;
while Choice <> 'null' do

begin
Exec('\COMMAND.COM',Concat('/C del ', Choice,'.mdl'));
GetStudents;
StudentMenu. lnit('Student.rec');

107

Choice :. StudentMenu.GetChoice;
end;

DialogScreen. Hide;
DialogScreen. Kill;

end;

procedure SetUp;
const

ALPHA
var

Password: name;
Countedr: integer;

begin
Password ="

Counteri 1;
Set~olor(l);
DialogScreen.Init('Passwd.dlg');
DialogScreen.Show(220. 25);
Line(220,64,420,64);
Line(220,67,420,67);
Line (220,70,420,70);
Ch :=#8;
while (Oh <> #1 3) and (Counteri < 21) do

begin
Oh :=ReadKey;
if Oh =chr(32) then

begin
Password Concat(Password,chr(32));
Counteri : Counteri + 1;

end;
iR Oh in ALPHA then

begin
SetColor);
OutTextXY(225+1 OCounteri ,68,Ch);
Password: Concat(Password,Oh);
Counteri : Counteri + 1;
SetColor(l);

end;
if (Oh = #8) and (Oounterl > 1) then

begin
SetColor(1);
Line(210+l0*Counterl ,64,220+l0OCounterl .64);
Line(21 0+1 0*Oounterl .67,220+1 0'Oounterl ,67);
Line(2 10+10OCounterl ,70,220+1 0*Counterl .70);
Counteri : Counteri - 1;
Password :=Copy(Password,1 ,Counterl -1);
Set~olor(0);

end;

108

end;
DialogScreen. Hide;
DialogScreen. Kill;
if Password <> 101653362' then

Exit;
Studentodel.Mode :'Setup';
SetUpMenu.lnit(CSetUp.mnu');
Choice :- SetUpMenu.GetChoice;
while (Choice <> 'EXIT') and (Choice <> 'null') do

begin
Hf Choice = 'SELECT AIRCRAFT' then SelectAC
else if Choice = ADD/MODIFY AIRCRAFT' then AddAC
else if Choice . 'STUDENT REPORT' then Report
else Rf Choice = 'DELETE STUDENT' then DeiStudent;
GotoXY(1 .1);
Studentodel.Mode :- 'Setup';
SetUpMenu. lnit('SetUp.mnu');
Choice: SetUp Menu. GetChoice;

end;
end;
end.

109

program Install;

uses DOS, CRT, GRAPH;

var
Oh :char;
grDriver integer;
grMode integer;
ErrCode integer;
DirInfo :SearchRec;

begin
ChDir('A:\');
grDriver :- OGA;
grMode :- OGAHi;
lnitGraph(grDriver,grMode,");
ErrCode :=GraphResult;
if ErrCode <> 0 then

begin
writeln('This program requires OGA graphics.');
writeln(' Install ABORTED.');
writeln(' Press any key to return to DOS.');
Ch: ReadKey;
Exit;

end;

SetTextJustify(CenterText,CenterText);
ClearDevice;
FindFirst('A:COPYR ITE.90',AnyFile,Dirlnf o);
if DOSError <> 0 then

begin
Sound(440);
Delay(1 00);
NoSound;
ClearDevice;
OutTextXY(320,1 00,'The Aircraft Recognition Tutor is COPY PROTECTED.');
OutTextXY(320,1 1 0,'Please see the User"s Manual for details.');
OutTextXY(320,1 20,'Press any key to return to DOS.');
Oh :. ReadKey;
ClearDevice;
CloseGraph;
Exit;

end;

ClearDevice;
OutTextXY(320,1 00,'Welcome to the Aircraft Recognition Tutor Install Program');
OutTextXY(320,1 1 0,'Press any key to begin');
Oh :- ReadKey;

110

ClearDevice;
OutTextXY(320,100,'Creating a new directory called "ARTUTOR".');
ChDir('C:\');
MkDir('ARTUTOR');
iN lOResuft <> 0 then

begin
OutTextXY(320,1 IlOCannot create directory. Install ABORTED.');
OutTextXY(320,1 20,'Press any key to return to DOS.');
Ch :- ReadKey;
ClearDevice;
CloseGraph;
Exit;

end;
ChDir('ARTUTOR');

ClearDevice;
FindFirst('A: Disk. 1 ',AnyFite, Dirinfo);
while DOSError <> 0 do

begin
Sound (440);
Delay (1 00);
NoSound;
ClearDevice;
OutTextXY(320,1 00,'Insure that Disk 1 is in Drive A: and press any key.');
Ch :- ReadKey;
FindFirst('A:Disk. 1',AnyFile,Dirlnfo);

end;

ClearDevice;
OutTextXY(320,100,'Copying files from Disk 1');
Exec('\COMMAND.COM','/C copy A:*.');
Exec('\COMMAND.COM','/C copy A:\WEFT\W.'):,
Exec('\COMMAND.COM','/C copy A:\DIALOG*..");
Exec('\COMMAND.COM','/C copy A:\MENU*.");
Exec('\COMMAND.COM','IC del A:COPYRITE.90');

ClearDevice;
OutTextXY(320,1 00,'lnsert Disk 2 in Drive A: and press any key.');
Ch :- ReadKey;
FindFirst('A: Disk. 2' ,AnyFile, Dirinfo);
while DOSError <> 0 do

begin
Sound(440);
Delay(l 00);
NoSound;
ClearDevice;
OutTextXY(320,1 00,'Insure that Disk 2 is in Drive A: and press any key.');
Oh :. ReadKey;

FindFirst('A :Disk. 2' ,Any File , Dirint o);
end;

ClearDevice;
OutTextXY(320,1 00,'Copying files from Disk 2');
Exec(\OMMAND.COM', 'IC copy A..');

ClearDevice;
OutTextXY(320,1 00,'lnsert Disk 3 in Drive A: and press any key.');
Oh :- ReadKey;
FindFirst('A: Disk. 3',AnyFile, Dirinfo);
while DOSError <> 0 do

begin
Sound(440);
Delay (1 00);
NoSound;
ClearDevice;
OutTextXY(320,1 00,'lnsure that Disk 3 is in Drive A: and press any key.');
Oh :. ReadKey;
FindFirst('A:Disk.3' ,AnyFile,Dirlnfo);

end;
ClearDevice;
OutTextXY(320,1 00,'Copying files from Disk 3');
Exec('\COMMAND.COM','/C copy A:*.');
Exec('\COMMAND.COM','/O copy A:\AC1*.*');
Exec('\COMMAND.COM','IC copy A:\AC2\.*');

ClearDevice;
OutTextXY(320,1 00,'lnsert Disk 4 in Drive A: and press any key.');
Oh :. ReadKey;
FindFirst('A:Disk.4',AnyFile,Dirnfo);
while DOSError <> 0 do

begin
Sound (44 0);
Delay(1 00);
NoSound;
ClearDevice;
OutTextXY(320,1 00,'Insure that Disk 4 is in Drive A: and press any key.');
Oh :. ReadKey;
FindFirst('A:Disk.4',AnyFile,Dirlnfo);

end;
OlearDevice;
OutTextXY(320,1 00,'Oopying files from Disk 4');
Exec('\COMMAND.COM','/O copy A:\AO3*.*);
Exec(\COMMAND.OOM','IO copy A:\AC4*..");
Exec('\OMMAND.OOM','/O del installexe');
Exec('\OOMMAND. OOM','IO del unstallexe');
Exec('\COMMAND. COM','/O del disk.*');

112

ClearDevice;
OutTextXY(320,1 O0,'Install program complete.');
OuiTextXY(320,1 110, 'Press any key to return to DOS');
Ch :- ReadKey;
ClearDevice;
CloseGraph;

end.

113

program Unstall;

uses DOS, CRT;

var
Ch :char;
Dirinfo : SearchRec;

begin
ClrScr;
Writeln('Unlnstalling the Aircraft Recognition Tutor.');
Writeln(Please Wait.');
Exec('\COMMAND.COM', '/C copy C:\ARTUTOR\COPYRITE.9O A:');
ChDir('C:\');
Exec('\COMMAND.COM','/C del C:\ARTUTOR\COPYRITE.90');
Exec('\COMMAND.COM','/C del C:\ARTUTOR*.bgi');
Exec('\COMMAND.COM', 'IC del C :\ARTUTOR\.scr);
ExecC\CMMAND.COM','/C del C:\ARTUTOR*.pic');
Exec('\COMMAND.COM','/C del C :\ARTUTOR*.dtg');
Exec('\COMMAND.COM','IC del C :\ARTUTOR*.nam');
Exec('\COMMAND.COM','/C del C:\ARTUTOR*.mnu');
Exec(\COMMAND. COM','/C del C :\ARTUTOR*. def');
Exec('\COMMAND.COM' ,'/C del C:XARTUTOR\.dat');
Exec('\COMMAND.COM','/C del C:\ARTUTOR* .exe');
Exec('\COMMAND.COM','/C del C:XARTUTOR\.hlp');
Exec(\COMMAND. COM', 'IC del C:'\ARTUTOR\.rec');
Exec('\COMMAND.COM','/C del C :\ARTUTOR*.def');
Exec('\COMMAND.COM','IC del C:\ARTUTOR*.mdl');
RmDir('ARTUTOR');
ClrScr;
Writeln('Unstall Completed. You may now Install the Aircraft Recognition Tutor');
Writeln('on another computer.');
Writeln('Press any key to return to DOS');
Ch. ReadKey;
ClrScr;

end.

114

APPENDIX B - USER'S MANUAL

Aircraft
Recognition

Tutor

User's Manual

Larry W. Campbell, 1990

User's Manual/ 1

115

Contents
1 Introduction

1.1 About the Tutor 4

1.2 WEFT Theory 7

2 Installing the Tutor
2.1 System Requirements 9

2.2 Running the Install Program 9

3 Using the Tutor
3.1 General Information 11
3.2 Being Diagnosed 12
3.3 The Three Levels 13
3.4 The Teach Mode 14

3.5 The Review Mode 15
3.6 The Test Mode 17

4 Playing the Game
4.1 One Player 18
4.2 Two Players 19

5 Using the Utilities
5.1 Password Protection 20
5.2 Choosing the Aircraft 20
5.3 Adding or Modifying Aircraft 21

5.4 Getting a Student Report 24
5.5 Deleting a Student 24

2 / Aircraft Recognition Tutor

116

Contents
6 Getting Help!

6.1 General Help 26
6.2 Context Sensitive Help 26

Appendi ces
A List of Aircraft in the System 28
B References 30
C Suggestion Form 32

Index
Notes

Aircraft Recognition Tutor
Larry W. Campbell

User's Manual/ 3

117

1 Introduction
1.1 About the Tutor
The Aircraft Recognition Tutor was developed as
part of a Masters Thesis in Computer Science by
CPT Larry W. Campbell. One of the major goals
of the thesis was to demonstrate that, using exist-
ing technology in Computer Science and Artifi-
cial Intelligence, a useful computer training tool
could be developed quickly and inexpensively.
hi addition, this training tool would run on exist-
ing hardware in the field (U.S. Army ADA Bat-
talions).

Part of this goal has definately been met. The
Aircraft Recognition Tutor was developed over a
period of 3 months by a single individual.
Whether the tutor is useful will be determined by
you, the user.

The requirement that the tutor run on existing
hardware imposed some serious constraints on
the development of the program. U.S. Army
ADA Battalions currently have Zenith Z-248
computers with 640K RAM, 20MB Hard Disk,

4 / Aircraft Recognition Tutor

118

360K 5-1/4" Floppy Disk, and CGA graphics.
Because the computers use CGA graphics, the
graphics resolution of the tutor was limited to
either 320 x 200 pixels with 4 colors or 640 x
200 with 2 colors. Both are inadequate in my
opinion, however, until the computer systems are
upgraded to EGA (640 x 350, 16 color), VGA
(640 x 480, 16 color), or Super VGA (800 x 600,
16 color), they will have to do. After experi-
menting with both of the available graphics
modes, the 640 x 200 mode was chosen as the
best comprimise. If the tutor is accepted and
used by the field, future versions will become
available for higher resolution graphics modes
which will allow the aircraft used by the system
to be of almost photographic quality.

The topic for the tutor was chosen based on the
past experience of tie author. Aircraft Recogni-
tion remains a crucial skill needed by all SHO-
RAD (Short Range Air Defense) soldiers. Un-
fortunately, this skill is difficult to acquire and is
quite perishable. In spite of continuous training
by units, soldiers continue to have difficulty
developing and maintaining proficiency at visu-

User's Manual/ 5

119

ally identifying aircraft. Numerous training aids
exist to help units trahi soldiers, however, they
need a qualified instructor in order to be effec-
tive. These instructors are not always available,
and the varying degrees of proficiency make
group training less than ideal. The Aircraft
Recognition Tutor attempts to fill a gap that
exists in most VACR (Visual Aircraft Recogni-
tion) training programs. The tutor uses the
WEFT (Wings, Engine, Fuselage, Tail) theory to
teach aircraft recognition. Because the tutor is
designed to identify the soldiers's current ability
and teach at a level appropriate to that ability, it
is useful for introducing VACR to new soldiers
as well as providing refresher training to more
advanced soldiers.

In order to make the program simple and inter-
esting to use, the interface was kept very basic.
In addition, a game mode was incorporated in
order to encourage use of the program. The best
training tools are of no value if they are not used.

Comments on the design of the tutor system, as
well as any suggestions, are solicited. A sugges-

6 / Aircraft Recognition Tutor

120

tion form is included as Appendix C. This form
can also be used to report any bugs found in the
system.

1.2 WEFT Theory

The WEFT (Wings, Engine, Fuselage, Tail)
theory is currently believed to be the best
method for teaching VACR (Visual Aircraft
Recognition). This theory is described in detail
irn FM 44-30, dated October 1986. The Aircraft
Recognition Tutor uses WEFT theory as the
basis from which to teach VACR.

According to FM 44-30, all aircraft are com-
posed of the same basic elements: wings to
provide lift, an engine to provide motive power,
a fuselage to carry the payload and controls, and
a tail assembly which usually serves the purpose
of controlling the direction of flight. These
elements differ in their shape, size, number, and
position. It is these basic elements that distin-
quish one aircraft type from another. Detailed
parts cannot be used as the only aid to aircraft
recognition, mainly because of the distances at

User's Manual / 7

121

which recognition should occur. The individual
components can be isolated for descriptions and
studied as separate recognition features. It is the
composite of these features that must be learned
in order to recognize and identify an aircraft.

For a detailed discussion of WEFT theory, and
the method used for describing the basic ele-
ments, see FM 44-30 Chapter 3.

8 / Aircraft Recognition Tutor

122

2 Installing the Tutor
2.1 System Requirements
The Aircraft Recognition Tutor requires a PC
compatible computer with the following fea-
tures:

DOS 2.1 (or higher)
512K RAM
Ilard Disk (system uses 1MB)
360K 5-1/4" Floppy Disk
CGA Graphics Adapter (or higher)

2.2 Running the Install
Program

To install the Aircraft Recognition Tutor on your
system:

1. Turn on your PC.
2. Type C: and press Enter.
3. Insert DISK 1 in drive A:
4. 'Type A:INSTALL and press Enter.
5. Follow the instructions on your screen.

The Aircraft Recognition Tutor is copy pro-
tected. It may only be installed on a single

User's Manual/ 9

123

system. To move the program from one system
to another repeat the install sequence on page 9,
however for step 4, do the following:

4. Type A:UNSTALL and press Enter.

The Install and Unstall programs require that the
disks NOT have write protect tabs on them. If
you receive a "Write Protect Error" while using
one of these programs, remove the write protect
tab, reinsert the disk, and press "R" to retry.

To start the tutor once it has been installed, make

sure that you are in the C:\ARTUTOR directory
and type ART and press Enter.

10 / Aircraft Recognition Tutor

124

3 Using theTutor
3.1 General Information
The Aircraft Recogniton Tutor has a simple user
interface. Few keys are required to use the
system. Normally, when a screen is displayed to
the user, the system will wait for the user to
press any key before continuing. When a menu
appears, the system will wait for the user to
select a menu item and press Enter.

The following keys have a special meaning in
the Aircraft Recognition Tutor:

Esc Quit what you are doing. This
nonnally brings you to a Menu one
level higher than where you were.

H Provides context sensitive help.
A hi the game mode, this is player 1's

button.
L In the game mode, this is player 2's

button.
Enter When no menu exists, this causes

the program to continue after it has

paused. When a menu exists, this
selects the highlighted item.

User's Manual/ 11

125

hi a menu, this highlights the
item above tie one currently
highlighted.

.4. In a menu, this highlights the item
below the one currently highlighted.

PgUp hi a menu, this causes the previous
10 selections to be displayed in the
menu.

PgDn In a menu, this causes the next 10
selections to be displayed in the
menu.
In the expert level, scrolls through
the WEFT features in reverse order.

+ In the expert level, scrolls through
tie WEFT features in forward order.

C When a Tutor session is completed,
this continues with the next session.

In the Setup/Utility Mode, some of these keys
have different meanings. See Chapter 5 for
details.

3.2 Being Diagnosed
When a new student is encountered by the Air-
craft Recognition Tutor (based on tie User ID),
the system first asks for the student's name, and

12 / Aircraft Recognition Tutor

126

then attempts to diagnose the student's level of
proficiency at visual aircraft recognition.
The student is presented with 10 aircraft, one at a
time, that are examples of specific WEFT fea-
tures. The student is also given a menu that
corresponds to the WEFI' feature that the aircraft
is exemplifying. The student is expected to
identify the WEFT feature that corresponds to
the menu title and is visible on the aircraft, and
then select it using the menu.
If the student incorrectly responds to 2 or more
of the 10, they will begin the tutor at the Novice
level. If they miss I or less, they will begin at
the hitermediate Level. Students are not allowed
to begin at the Expert Level.

3.3 The Three Levels
The Aircraft Recognition Tutor allows studeats
to be in one of three levels: Novice, Intermedi-
ate, and Expert.

The Novice Level is for students that are new to
VACR and have not mastered WEFT theory.

The Intermediate Level is designed for students
that have a solid background in recognizing

User's Manual/ 13

127

WEFT features. In this level, students learn to
identify specific aircraft visually based on their
WEFT components.

In the Expert Level, students must identify air-
craft based solely on a WEFT description of the
'ircraft. No visual image of the aircraft is pro-
vided. This level provides a real challenge to
even the best VACR students.

3.4 The Teach Mode
The Teach Mode is available in the Novice and
Intermediate Levels. In the Novice Level, stu-
dents are taught WEFT features. Intermediate
Level students are taught WEFT features visible
on specific aircraft.

The Aircraft Recognition Tutor displays an
aircraft in tie left window of the binoculars.

Along with that aircraft is a description of a
WEFT feature of the aircraft. The student
should study tie feature, and press Enter when
done.

In the Novice Level, a new aircraft/WEFT fea-
ture will be shown, until the tutor has shown all

14 / Aircraft Recognition Tutor

128

of the WEFT features.

In the Intermediate Level, a single aircraft is
shown, and the tutor displays all of the WEFT
features of that aircraft before continuing with
another aircraft. This is repeated until all of the
aircraft that have been selected for the system to
teach have been shown.

3.5 The Review Mode
The Review Mode randomly but completely
presents each WEFT feature (Novice Level) or
each aircraft (Intermediate and Expert Levels),
asks the student to identify the WEFF feature or
aircraft, and takes action based on the student's
response.

During a review, three possible conditions can
exist when a student attempts to identify a
WEFT feature or aircraft:

(1) the student may respond correctl).
(2) the student may respond with an

anticipated but incorrect answer.
(3) the student may respond with an

unanticipated, incorrect answer.

User's Manual/ 15

129

Each of these conditions is handled differently
by the tutor system.

In case (1), the tutor system will recognize the
student for the correct answer, and present an-
other aircraft to the student.

In case (2), the student is presented with both the
aircraft being reviewed and the aircraft that the
student selected from the menu. Both are identi-
fied to the student, and the system performs a
comparison of the two for the student so that the
differences are reinforced in the student's mind.
The student will be required to demonstrate iden-
tification of the missed aircraft again some time
later in the session. The tutor then continues
with another aircraft.

In case (3), the aircraft is identified to the stu-
dent, and the student is asked to identify specific
features of the aircraft. The tutor session then
continues as in (1) and (2). The student may
have to identify a missed aircraft several times
before the systen is satisfied of the student's
knowledge of that item.

16 / Aircraft Recognition Tutor

130

3.6 The Test Mode
The Test Mode is available in the Intermediate
and Expert Levels. Testing consists of present-
ing the student with each aircraft, asking the
student to identify the aircraft, and maintaining a
record of the student's performance.

A student must perform satisfactorily on the test
in order to advance to the next level. In addition,
poor performance may cause the student to
revert to a lower level or mode.

A student at the Expert Level that receives a
score of 100% will be deleted from the system
and added to the lall of Fame.

User's Manual! 17

131

4 Playing the Game
4.1 One Player
The One-Player Game pits a student against the
tutor system in a race to identify aircraft. The
system opponent is based oil an image recogni-
tion program that uses WEFT features to identify
the aircraft. No unfair knowledge of the aircraft
is available to the system opponent.

The player does not have to be enrolled in the
tutor system in order to play the game, and per-
forinance in the game is not maintained in the
student database.

The game is played as follows: An aircraft
appears in the binoculars, and when the player
recognizes the aircraft they press their "button".
The "button" for the One-Player game is the 'A'
key on the keyboard. The player is then given a
chance to identify the aircraft in a menu that will
appear. A limited amount of time is allowed for
the player to recognize the aircraft. Also, the
system opponent may recognize the aircraft first,
and will be allowed to identify it.

18 / Aircraft Recognition Tutor

132

A total of 25 aircraft comprise the game. Points
are awarded for a correct response, and deducted
for an incorrect response. After all 25 aircraft
have been shown, the player with the highest
score is the winner.

4.2 Two Players
The Two-Player game is played just like the
One-Player game, but no system opponent ex-
ists. Instead, two players compete against each
other. The "button" for Player 1 is the same as
in the One-Player game, and the "button" for
Player 2 is the 'L' key.

Again, the players need not be enrolled in the
tutor system in order to play the game.

User's Manual! 19

133

5 Using the Utilities
5.1 Password Protection
The Setup/Utility Mode of the Aircraft Recogni-
tion Tutor is intended to be used by the System
Administrator (S-3). Because of this, access to
this mode is provided only with a password. The
password is included in this manual in an enve-
lope attached to the back cover. If this password
is lost, a new one can be requested by using the
Suggestion Form located in Appendix C.

When the Setup/Utility Mode is selected from
the Main Menu, the user is asked to enter thei;
password. Once the password in entered cor-
rectly, the Setup/Utility Menu is presented. If
the password is entered incorrectly, the system
returns to the Main Menu.

5.2 Choosing the Aircraft
The Select Aircraft Utility allows the System
Admiiiistrator to select the aircraft that will be
taught by the system. Initially, this includes all
of the aircraft listed Appendix A of this manual.

20 / Aircraft Recognition Tutor

134

To modify this list, use the menu to select the
aircraft that you want to include in the system.
This aircraft will be added to the list and you
will be presented with an updated menu of air-
craft. Continue the selection process until all of
the aircraft that you want to be taught by the
system have been selected. Press 'Esc' when
you are finished.

Caution: Once you start this utility, the list of
aircraft used by the system is erased. You must
select ALL of the aircraft that you want included
in the system.

5.3 Adding or Modifying
Aircraft

Adding or modifying aircraft is a complex proce-
dure. Once you begin defining an aircraft, you
must complete all of the steps listed below. An
aircraft definition consists of three views: front,
side, and bottom.

To add or modify an aircraft:
1. Select "Add/Modify Aircraft" from the

Setup/Utility Menu.

User's Manual/ 21

135

2. When prompted, type in the nomencla-
ture and name of the aircraft as you
want it to appear (or as it already ap-
pears, if you want to modify the aircraft
definition) in tie Aircraft Menu. This
name will appear for a brief moment in
the lower left portion of the screen.

3. If the aircraft that you named already
exists, it will be drawn on the screen in
the upper left corner, and then translated
(2 times larger) on tihe right side of the
screen.

4. Position the cursor inside the circular
area, using the arrow keys. This circle
corresponds to the binocular window.

5. Draw within the circle by pressing the
space bar when the cursor is positioned
where you want to draw. You can erase
in the same manner.

6. When you are finished drawing the air-
craft, press 'Enter'.

7. The aircraft will then be reduced and
drawn in the upper left comer of the
screen.

8. A menu will appear. This menu will

22 / Aircraft Recognition Tutor

136

contain selections for a particular WEFT
feature. Highlight the appropriate fea-
ture visible in this view of the aircraft

and press 'Enter'. If the WEFT feature is
not visible in this view of the aircraft,
press 'Esc'.

9. Repeat step 8 for each of the WEFT fea-
ture menus.

10. Repeat steps 3-8 for the other two views
of the aircraft.

The aircraft that you defined is not automatically
added to the list of aircraft taught by the system.
To include new aircraft, choose the "Select Air-
craft" option from the Setup/Utility Menu.

If you make an error in defining an aircraft,
simply modify the definition using the same
method described above.

Aircraft are identified by the tutor system based
on the first four characters in the name. Tb
define a new aircraft with a similar name as an
existing one, insure that the first four characters
of the name you enter in step 2 are unique.

User's Manual /23

137

5.4 Getting a Student
Report

Reports are available for each student that uses
the tutor system. To get a report on a student:

I. Select "Student Report" from the Setup/
Utility Menu.

2. Select the student that you want a report
on based on their User ID from the
menu shown.

3, Repeat for other students as desired.
Press 'Esc' when you are finished with
this utlity.

The Student Report provides the following infor-
mation about a student:

1. The Student's User ID.
2. The Student's Name.
3. The current Mode the student is in.
4. The current Level the student is ,At.
5. The last test score the student received.

5.5 Deleting a Student
Students may be deleted from the tutor systein as
necessary. This is useful when a student PCS's
and no longer needs to be maintained in the

24 / Aircraft Recognition Tutor

138

student database. To delete a student:
1. Select "Delete Student" from the Setup/

Utility Menu.
2. Select the student to be deleted based on

their User ID from the menu shown.
3. The student will be deleted and an

updated menu will be shown. Repeat
step 2 to delete additional students.

4. Press 'Esc' when you are finished with
this utility.

When a student receives a test score of 100% in
the Test/Expert Mode of the tutor, they are auto-
matically deleted from the student database and
added to the Hall of Fame.

User's Manual/ 25

139

6 Getting Help!
6.1 General Help
General Help for the Aircraft Recognition Tutor
is available from the Main Menu by selecting
"Get Help!". This menu selection causes the
General Help Menu to appear. Help is available
from this menu on the following topics:

1. About Help! - information about the
Help available in the tutor system.

2. Tutor Help! - An overview of the tutor
system.

3. Game Help! - An overview of the I or 2
Player Game.

4. Setup/Utility Help! - A description of
the various utilities available in the
system.

6.2 Context Sensitive
Help

Context Sensitive Help is available from almost
anywhere in the system by pressing 'H' at any
time. Context Sensitive Help provides detailed
information about the current Mode/Level that

26 / Aircraft Recognition Tutor

140

tie user was in at the time of the Help request.

If pressing the 'H' key does not bring up a Help
screen, insure that the CAPS LOCK key is up
and try again.

User's Manual/ 27

141

Appendix A
List of Aircraft in the
System

The following aircraft are included in the Air-

craft Recognition Tutor:

A-4 Skyhawk F-100 Super Sabre

A-6 Intruder F-104 Starfighter
A-7 Corsair II F-I 11

A- I OA Thunderbolt II Fantan A
Alpha Jet G.91Y

AM-X Galeb

AV-8 Harrier Hawk
Buccaneer Hunter
Draken Jaguar

F-4 Phantom Lightning
F-5 Freedom Fighter MiG-17 Fresco

F- 14 Tomcat MiG- 19 Farmer
F- 15 Eagle MiG-21 Fishbed

F- 16 Fighting Falcon MiG-25 Foxbat
F/A-18 Hornet MiG-27 Flogger D

F-20 Tigershark MiG-29 Fulcrum

F-86 Sabrejet Mirage 111/5

28 / Aircraft Recognition Tutor

142

Mirage F1 Super Etendard
Su-7B Fitter A Tornado
Su- 17,20,22 Fitter Viggen AJ-37
Su-24 Fencer Yak-28 Brewer
Su-25 Frogfoot Yak-36 Forger

User's Manual/ 29

143

Appendix B
References
1. Weidman, LtCol J. D. and Harwood, LtCol
W. R. (1985). Fratricide. USAF Weapons Re-
view, vol 33, pp. 16-20.

2. Pliler, J. R. (1984). Aircraft Recognition
Skills Demand Attention. Air Defense Artillery,
Fall 84, pp. 14 -16.

3. Headquarters, Department of the Army
(1986). FM 44-30 Visual Aircraft Recognition,
October 1986.

4. Baron, R. J. (1987). The Cerebral Com-
puter.

5. Guindon, R. (1988). Cognitive Scier,ce and
its Applications for Human-Computer lnterac-
tion.

6. Papert, S. (1980). Mindstorms.

7. Bower, G. H. and Hilgard, E. R. (1981).

30 / Aircraft Recognition Tutor

144

Theories of Learning.

8. Jonassen, D. H. (1988). Instructional De-
signs for Microcomputer Courseware.

9. Kearsley, G. (1987). Artificial Intelligence
and Instruction.

10. Godfrey, D. and Sterling, S. (1982). The
Elements of CAL.

11. Sleeman, D. and Brown, J. S. (1982). Intel-
ligent Tutoring Systems.

User's Manual / 31

145

Appendix C
Suggestion Form

M.il w: (TiL~n W. Cwnb. EMvI at Cqmb.II@NPS.CS.NAVY.NUL
SWC 2269

N.'.i P".t. Sohool
Moute.). CA 93940

Cannnents/Sugpmahions

Yot N m. Adm, and Phone. Numb. (Auto- o., * bk

321/ Aircraft Recognition Tutor

146

Index
A key 11 Keys 1
ADA 4 L key 11
Add 21 Level 13,14,15,17,24,26
Aircraft 4,5,6.7,9,11, Main 20,26

12,13,21,28 Menu 13,20,21,26
Artificial Intelligence 4 Mode 12,15,17,24,25,26
Binoculars 14,18,21 Modify 21
Bugs 7,32 Novice 13,14,15
Button 18,19 Password 20
C key 12 PgDn key 12
Caps Lock 27 PgUp key 12
CGA 5,9 Report 24
Comments 32 Requirements 9
Computer 9 Review 15
Computer Science 4 Select 20,23
Context Sensitive 26 Setup 12.20,21,23,24,25,26
Copy Protection 9 SHORAD 5
Database 18,25 Student 18,24,25
Delete 25 Suggestions 20,32
Diagnose 12 System Administrator 20
EGA 5 System Opponent 18,19
EMail 32 Teach 14
Enterkey 11.14,21 Test 17,24,25
Esc key 11,21.23,23,24,25 Thesis 4
Expert 13.14.15.17,25 Tutor 4.6,7,9,11,12.13.26
FM 44-30 7,8 Unstall i0
Game 6,18,19,26 User ID 12,24,25
H key 11,26,27 Utility 12,20,21,23,24,25,26
Hall of Fame 17,25 VACR 6,7.13.14
Help 26,27 VGA 5
bist.dI 9 WEFT 6,7,8,13,14.15,18,23
hInerface 11 Zenith 4
Intemiediate 13,14,15,17

User's Manual/ 33

147

Notes

34/ Aircraft Recognition Tutor

148

APPENDIX C - AIRCRAFT IMAGES

A-4 Skyhawk

A-6 Intruder

A-7 Corsair I1

149

.ini i

A-1OA Thunderbolt 11

Alpha Jet

AM-X

150

AV-8 Harrier

Buccaneer

Draken

151

F-4 Phantom

F-5 Freedom Fighter

~noE-

F- 14 Tomcat

15

F-15 Eagle

F-16 Fighting Falcon

F/A-I 18 Hornet

1 53

F-20 Tigershark

F-86 Sabrejet

F- 100 Super Sabre

154

F-104 Starfighter

F-ill1

Fantan A

1 55

G.91Y

Galeb

Hawk

156

Hunter

Jaguar

Lightning

157

MiG-17 Fresco

MiG-19 Fanner

MiG-21 Fishbed

158

MiG-25 Foxbat

MiG-27 Flogger D

MiG-29 Fulcrum

159

Miraige 1115

Mirage F- I

Su-7B Fitter A

160

Su-17, 20, 22 Fitter

Su-24 Fencer

Su-25 Frogfoot

161

Super Etendard

Tornado

Viggen AJ-37

162

Yak-28 Brewer

Yak-36 Forger

163

BIBLIOGRAPHY

1. Weidman, LtCol J. D. and Harwood, LtCol W. R., "Fratricide" USAF Weapons
Review, vol 33, pp. 16-20, Summer 1985.

2. Pliler, J. R., "Aircraft Recognition Skills Demand Attention" Air Defense Artillery,
pp. 14 -16, Fall 1984.

3. Pliler, J. R., "Recognition List Grows", Air Defense Artillery, pp. 38-39, January-
February 1988.

4. Headquarters, Department of the Army, Field Manual 44-30, Visual Aircraft
Recognition, pp. 1.1-5.138, Government Printing Office, Washington, DC, October
1986.

5. Wood, R., Jane's World Aircraft Recognition Handbook, pp. 5-55, Jane's Publishing
Company, 1985.

6. Harmon, P., Intelligent Job Aids: How A! Will Change Training in tile Next Five
Years, pp. 165-190, Addison-Wesley Publishing Company, 1987.

7. Kearsley, G., Artificial Intelligence and Instruction, pp. 1-10, Addison-Wesley
Publishing Company, 1987.

8. Bower, M. and Hilgard, J., Theories of Learning, pp. 1-511, Addison-Wesley
Publishing Company, 1981.

9. Park, 0. Perez, R. S., and Seidel, R. J., Intelligent CA!: Old Wine in New Bottles, or
a New Vintage?, pp. 11-40, Addison-Wesley Publishing Company, 1987.

10. Goldstein, I. P., The Genetic Graph: A Representation for the Evolution of
Procedural Knowledge, pp. 51-75, Academic Press, 1982.

11. Woolf, B., Intelligent Tutoring Sy'stems, A Survey, pp. 1-44, Morgan Kaufnann
Publishers, 1988.

12. Sleeman, D. and Hendley, R. J., ACE: A System Which Analyses Complex
Explanations, pp. 99-116, Academic Press, 1982.

13. Matz, M., Towards a Process Model for High School Algebra Errors, pp. 25-49,
Academic Press, 1982

14. Johnson W. L. and Soloway E.. PROUST: An Automatic Debuggerfir Pascal
Programs. pp. 49-67, Addison-Wesley Publishing Company, 1987.

164

15. Papert, S., Mindstorms, pp. 3-190, Basic Books, 1980.

16. Clancey, W. J., Tutoring Rules for Guiding a Case Method Dialogue, pp. 201-222,
Academic Press, 1982.

17. Burton, R. R. and Brown, J. S., An Investigation of Computer Coaching for Informal
Learning Activities, pp. 79-97, Academic Press, 1982.

18. lano, R. P., Is Education a Science? No Way!, pp. 256-271, W. H. Freeman and
Company, 1987.

19. Godfrey, D. and Sterling, S., The Elements of CAL, pp. 1-281, Reston Publishing
Company, 1982.

20. Gallant, J., "Speech Recognition Products", EDN, pp. 1-8, January 19, 1989.

165

INITIAL DISTRIBUTION LIST

I Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Headquarters
Department of the Army
Training and Doctrine Command
Fort Monroe, Virginia 23651-5000

4. Commandant
US Army Air Defense Artillery School
Fort Bliss, Texas 79916-7004

5. Commander
1/62 Air Defense Artillery Battalion
25th Infantry Division (Light)
Schofield Barracks, Hawaii 96857-6051

6. Commander
2/62 Air Defense Artillery Battalion
7th Infantry Division (Light)
Fort Ord, Califomia 93941

7. Dr. Yuh-jeng Lee 50
Naval Postgraduate School
Code CS, Department of Computer Science
Monterey, California 93943-5000

8. CPT Larry W. Campbell 2
Suite #124
12917-H Jefferson Avenue
Newport News, Virginia 23602

9. Dr. Man-Tak Shing
Naval Postgraduate School
Code CS, Department of Computer Science
Monterey, Califomia 93943-5000

10. Ong Seow Meng
#09-102, Block 272
Yishun St. 22
Singapore 2776
Republic of Singapore

166

